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Abstract

The offset method for solving word analo-
gies has become a standard evaluation tool
for vector-space semantic models: it is
considered desirable for a space to repre-
sent semantic relations as consistent vec-
tor offsets. We show that the method’s re-
liance on cosine similarity conflates offset
consistency with largely irrelevant neigh-
borhood structure, and propose simple
baselines that should be used to improve
the utility of the method in vector space
evaluation.

Vector space models of semantics (VSMs) rep-
resent words as points in a high-dimensional space
(Turney and Pantel, 2010). There is considerable
interest in evaluating VSMs without needing to
embed them in a complete NLP system. One such
intrinsic evaluation strategy that has gained in pop-
ularity in recent years uses the offset approach to
solving word analogy problems (Levy and Gold-
berg, 2014; Mikolov et al., 2013c; Mikolov et
al., 2013a; Turney, 2012). This method assesses
whether a linguistic relation — for example, be-
tween the base and gerund form of a verb (de-
bug and debugging) — is consistently encoded as
a particular linear offset in the space. If that is
the case, estimating the offset using one pair of
words related in a particular way should enable us
to go back and forth between other pairs of words
that are related in the same way, e.g., scream and
screaming in the base-to-gerund case (Figure 1).

Since VSMs are typically continuous spaces,
adding the offset between debug and debugging to
scream is unlikely to land us exactly on any par-
ticular word. The solution to the analogy prob-
lem is therefore taken to be the word closest in
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Figure 1: Using the vector offset method to solve
the analogy task (Mikolov et al., 2013c).

cosine similarity to the landing point. Formally, if
the analogy is given by

a : a∗ :: b : (1)

where in our example a is debug, a∗ is debug-
ging and b is scream, then the proposed answer to
the analogy problem is

x∗ = argmax
x′

cos(x′, a∗ − a+ b) (2)

where
cos(v, w) =

v · w
‖v‖‖w‖

(3)

The central role of cosine similarity in this
method raises the concern that the method does
not only evaluate the consistency of the offsets
a∗− a and b∗− b but also the neighborhood struc-
ture of x = a∗−a+b. For instance, if a∗ and a are
very similar to each other (as scream and scream-
ing are likely to be) the nearest word to x may sim-
ply be the nearest neighbor of b. If in a given set
of analogies the nearest neighbor of b tends to be
b∗, then, the method may give the correct answer
regardless of the consistency of the offsets (Figure
2).

In this note we assess to what extent the per-
formance of the offset method provides evidence
for offset consistency despite its potentially prob-
lematic reliance on cosine similarity. We use two
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Figure 2: When a∗ − a is small and b and b∗ are
close, the expected answer may be returned even
when the offsets are inconsistent (here screaming
is closest to x).
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Figure 3: Reversing the direction of the task.

methods. First, we propose new baselines that per-
form the task without using the offset a∗ − a and
argue that the performance of the offset method
should be compared to those baselines. Second,
we measure how the performance of the method is
affected by reversing the direction of each analogy
problem (Figure 3). If the method truly measures
offset consistency, this reversal should not affect
its accuracy.

1 Analogy functions

We experiment with the following functions. In all
of the methods, every word in the vocabulary can
serve as a guess, except when a, a∗ or b are explic-
itly excluded as noted below. Since the size of the
vocabulary is typically very large, chance perfor-
mance, or the probability of a random word in the
vocabulary being the correct guess, is extremely
low.

VANILLA: This function implements the offset
method literally (Equation 2).

ADD: The x∗ obtained from Equation 2 is of-
ten trivial (typically equal to b). In practice, most
studies exclude a, a∗ and b from consideration:

x∗ = argmax
x′ 6∈{a,a∗,b}

cos(x′, a∗ − a+ b) (4)

ONLY-B: This method ignores both a and a∗

and simply returns the nearest neighbor of b:

x∗ = argmax
x′ 6∈{a,a∗,b}

cos(x′, b) (5)

As shown in Figure 2, this baseline is likely to
give a correct answer in cases where a∗−a is small
and b∗ happens to be the nearest neighbor of b.

IGNORE-A: This baseline ignores a and returns
the word that is most similar to both a∗ and b:

x∗ = argmax
x′ 6∈{a,a∗,b}

cos(x′, a∗ + b) (6)

A correct answer using this method indicates
that b∗ is closest to a point y that lies mid-way be-
tween a∗ and b (i.e. that maximizes the similarity
to both words).

ADD-OPPOSITE: This function takes the logic
behind the ONLY-B baseline a step further – if the
neighborhood of b is sufficiently sparse, we will
get the correct answer even if we go in the opposite
direction from the offset a∗ − a:

x∗ = argmax
x′ 6∈{a,a∗,b}

cos(x′,−(a∗ − a) + b) (7)

MULTIPLY: Levy and Goldberg (2014) show
that Equation 2 is equivalent to adding and sub-
tracting cosine similarities, and propose replacing
it with multiplication and division of similarities:

x∗ = argmax
x′ 6∈{a,a∗,b}

cos(x′, a∗) cos(x′, b)

cos(x′, a)
(8)

REVERSE (ADD): This is simply ADD applied
to the reverse analogy problem: if the original
problem is debug : debugging :: scream : , the
reverse problem is debugging : debug :: scream-
ing : . A substantial difference in accuracy
between the two directions in a particular type
of analogy problem (e.g., base-to-gerund com-
pared to gerund-to-base) would indicate that the
neighborhoods of one of the word categories (e.g.,
gerund) tend to be sparser than the neighborhoods
of the other type (e.g., base).

REVERSE (ONLY-B): This baseline is equiva-
lent to ONLY-B, but applied to the reverse prob-
lem: it returns b∗, in the notation of the original
analogy problem.



a a∗ n

Common capitals: athens greece 506
All capitals: abuja nigeria 4524
US cities: chicago illinois 2467
Currencies: algeria dinar 866
Nationalities: albania albanian 1599
Gender: boy girl 506
Plurals: banana bananas 1332
Base to gerund: code coding 1056
Gerund to past: dancing danced 1560
Base to third person: decrease decreases 870
Adj. to adverb: amazing amazingly 992
Adj. to comparative: bad worse 1332
Adj. to superlative: bad worst 1122
Adj. un- prefixation: acceptable unacceptable 812

Table 1: The analogy categories of Mikolov et al.
(2013a) and the number of problems per category.

2 Experimental setup

Analogy problems: We use the analogy dataset
proposed by Mikolov et al. (2013a). This dataset,
which has become a standard VSM evaluation set
(Baroni et al., 2014; Faruqui et al., 2015; Schn-
abel et al., 2015; Zhai et al., 2016), contains 14
categories; see Table 1 for a full list. A num-
ber of these categories, sometimes referred to as
“syntactic”, test whether the structure of the space
captures simple morphological relations, such as
the relation between the base and gerund form of
a verb (scream : screaming). Others evaluate the
knowledge that the space encodes about the world,
e.g., the relation between a country and its cur-
rency (latvia : lats). A final category that doesn’t
fit neatly into either of those groups is the relation
between masculine and feminine versions of the
same concept (groom : bride). We follow Levy
and Goldberg (2014) in calculating separate accu-
racy measures for each category.

Semantic spaces: In addition to comparing the
performance of the analogy functions within a sin-
gle VSM, we seek to understand to what extent
this performance can differ across VSMs. To this
end, we selected three VSMs out of the set of
spaces evaluated by Linzen et al. (2016). All three
spaces were produced by the skip-gram with nega-
tive sampling algorithm implemented in word2vec
(Mikolov et al., 2013b), and were trained on the
concatenation of ukWaC (Baroni et al., 2009) and
a 2013 dump of the English Wikipedia.

The spaces, which we refer to as s2, s5 and s10,
differed only in their context window parameters.
In s2, the window consisted of two words on ei-
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Figure 4: Accuracy of all functions on space s5.

ther side of the focus word. In s5 it included five
words on either side of the focus word, and was
“dynamic” – that is, it was expanded if any of the
context words were excluded for low or high fre-
quency (for details, see Levy et al. (2015)). Fi-
nally, the context in s10 was a dynamic window of
ten words on either side. All other hyperparame-
ters were set to standard values.

3 Results

Baselines: Figure 4 shows the success of all of
the analogy functions in recovering the intended
analogy target b∗ in space s5. In line with Levy
and Goldberg (2014), there was a slight advan-
tage for MULTIPLY over ADD (mean difference
in accuracy: .03), as well as dramatic variabil-
ity across categories (ranging from .13 to .90
in ADD). This variability cuts across the dis-
tinction between the world-knowledge and mor-
phological categories; performance on currencies
and adjectives-to-adverbs was poor, while perfor-
mance on capitals and comparatives was high.

Although ADD and MULTIPLY always outper-
formed the baselines, the margin varied widely
across categories. The most striking case is the
plurals category, where the accuracy of ONLY-B

reached .70, and even ADD-OPPOSITE achieved



Space ADD ADD - IGNORE-A ADD - ONLY-B

s2 .53 .41 .42
s5 .6 .29 .36
s10 .58 .26 .33

Table 2: Overall scores and the advantage of ADD

over two of the baselines across spaces.

a decent accuracy (.45). Taking a∗ but not a into
account (IGNORE-A) outperformed ONLY-B in ten
out of 14 categories. Finally, the poor performance
of VANILLA confirms that a, a∗ and b must be ex-
cluded from the pool of potential answers for the
offset method to work. When these words were
not excluded, the nearest neighbor of a∗ − a + b
was b in 93% of the cases and a∗ in 5% of the cases
(it was never a).

Reversed analogies: Accuracy decreased in
most categories when the direction of the anal-
ogy was reversed (mean difference −0.11). The
changes in the accuracy of ADD between the orig-
inal and reversed problems were correlated across
categories with the changes in the performance
of the ONLY-B baseline before and after reversal
(Pearson’s r = .72). The fact that the performance
of the baseline that ignores the offset was a reliable
predictor of the performance of the offset method
again suggests that the offset method when applied
to the Mikolov et al. (2013a) sets jointly evaluates
the consistency of the offsets and the probability
that b∗ is the nearest neighbor of b.

The most dramatic decrease was in the US
cities category (.69 to .17). This is plausibly
due to the fact that the city-to-state relation is a
many-to-one mapping; as such, the offsets derived
from two specific city-states pairs — e.g., Sacra-
mento:California and Chicago:Illinois — are un-
likely to be exactly the same. Another sharp de-
crease was observed in the common capitals cate-
gory (.9 to .53), even though that category is pre-
sumably a one-to-one mapping.

Comparison across spaces: The overall accu-
racy of ADD was similar across spaces, with a
small advantage for s5 (Table 2). Yet the break-
down of the results by category (Figure 5) shows
that the similarity in average performance across
the spaces obscures differences across categories:
s2 performed much better than s10 in some of the
morphological inflection categories (e.g., .7 com-
pared to .44 for the base-to-third-person relation),
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Figure 5: Comparison across spaces. The leftmost
panel shows the accuracy of ADD, and the next
two panels show the improvement in accuracy of
ADD over the baselines.

whereas s10 had a large advantage in some of the
world-knowledge categories (e.g., .68 compared
to .42 in the US cities category). The advantage of
smaller window sizes in capturing “syntactic” in-
formation is consistent with previous studies (Red-
ington et al., 1998; Sahlgren, 2006). Note also that
overall accuracy figures are potentially misleading
in light of the considerable variability in the num-
ber of analogies in each category (see Table 1): the
“all capitals” category has a much greater effect on
overall accuracy than gender, for example.

Spaces also differed in how much ADD im-
proved over the baselines. The overall advantage
over the baselines was highest for s2 and lowest
for s10 (Table 2). In particular, although accuracy
was similar across spaces in the nationalities and
common capitals categories, much more of this
accuracy was already captured by the IGNORE-A

baseline in s10 than in s2 (Figure 5)

4 Discussion

The success of the offset method in solving word
analogy problems has been taken to indicate that
systematic relations between words are repre-
sented in the space as consistent vector offsets



(Mikolov et al., 2013c). The present note has ex-
amined potential difficulties with this interpreta-
tion. A literal (“vanilla”) implementation of the
method failed to perform the task: the nearest
neighbor of a∗−a+b was almost always b or a∗.1

Even when those candidates were excluded, some
of the success of the method on the analogy sets
that we considered could also be obtained by base-
lines that ignored a or even both a and a∗. Finally,
reversing the direction of the analogy affected ac-
curacy substantially, even though the same offset
was involved in both directions.

The performance of the baselines varied widely
across analogy categories. Baseline performance
was poor in the adjective-to-superlative relation,
and was very high in the plurals category (even
when both a and a∗ were ignored). This sug-
gests that analogy problems in the plural category
category may not measure whether the space en-
codes the single-to-plural relation as a vector off-
set, but rather whether the plural form of a noun
tends to be close in the vector space to its singular
form. Baseline performance varied across spaces
as well; in fact, the space with the weakest over-
all performance (s2) showed the largest increases
over the baselines, and therefore the most evidence
for consistent offsets.

We suggest that future studies employing the
analogy task report the performance of the simple
baselines we have suggested, in particular ONLY-
B and possibly also IGNORE-A. Other methods for
evaluating the consistency of vector offsets may be
less vulnerable to trivial responses and neighbor-
hood structure, and should be considered instead
of the offset method (Dunbar et al., 2015).

Our results also highlight the difficulty in com-
paring spaces based on accuracy measures aver-
aged across heterogeneous and unbalanced anal-
ogy sets (Gladkova et al., 2016). Spaces with sim-
ilar overall accuracy can vary in their success on
particular categories of analogies; effective repre-
sentations of “world-knowledge” information are
likely to be useful for different downstream tasks
than effective representations of formal linguistic
properties. Greater attention to the fine-grained
strengths of particular spaces may lead to the

1A human with any reasonable understanding of the anal-
ogy task is likely to also exclude a, a∗ and b as possible re-
sponses, of course. However, such heuristics that are baked
into an analogy solver, while likely to improve its perfor-
mance, call into question the interpretation of the success of
the analogy solver as evidence for the geometric organization
of the underlying semantic space.

development of new spaces that combine these
strengths.
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