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Abstract

Do distributional word representations en-
code the linguistic regularities that the-
ories of meaning argue they should en-
code? We address this question in the
case of the logical properties (monotonic-
ity, force) of quantificational words such
as everything and always. Using the vector
offset approach to solving word analogies,
we find that the skip-gram model of distri-
butional semantics behaves in a way that is
consistent with encoding these features in
some areas, but not in others. Human par-
ticipants performed well even where the
model struggled. The model’s success cru-
cially depended on large training corpora,
suggesting that distributional information
is insufficient for human language acqui-
sition. Finally, we discuss caveats with us-
ing the offset method to uncover the repre-
sentation of linguistic features.

1 Introduction

Vector-space models of lexical semantics (VSMs)
represent words as points in a high-dimensional
space. Similar words are represented by points
that are close together in the space. VSMs are typ-
ically trained on a corpus in an unsupervised way;
the goal is for words that occur in similar contexts
to be assigned similar representations. The con-
text of a word in a corpus is often defined as the set
of words that occur in a small window around the
word of interest (Lund and Burgess, 1996; Turney
and Pantel, 2010). VSM representations have been
shown to be useful in improving the performance
of NLP systems (Turian et al., 2010; Bansal et al.,
2014) as well as in predicting cognitive measures
such as similarity judgments and semantic priming
(Jones et al., 2006; Hill et al., 2015).

While there is evidence that VSM representa-
tions encode useful information about the mean-
ing of open-class words such as dog or table, less
is know about the extent to which they capture
abstract linguistic properties, in particular the as-
pects of word meaning that are crucial in logical
reasoning. Some have conjectured that those prop-
erties are unlikely to be encoded in VSMs (Lewis
and Steedman, 2013), but evidence that VSMs en-
code features such as syntactic category or verb
tense suggests that this pessimism is premature
(Mikolov et al., 2013c; Levy and Goldberg, 2014).

The goal of this paper is to evaluate to what ex-
tent logical features are encoded in VSMs. We un-
dertake a detailed analysis of words with quantifi-
cational features, such as everybody or nowhere.
To assess whether a particular linguistic feature is
encoded in a vector space, we adopt the vector off-
set approach to the analogy task (Turney, 2006;
Mikolov et al., 2013c; Dunbar et al., 2015). In the
analogy task, a system is requested to fill in the
blank in a sentence:

(1) man is to woman as king isto __.

The system is expected to infer the relation be-
tween the first two words—man and woman—and
find a word that stands in the same relation to king.
When this taks is solved using the offset method,
there is no explicit set of relations that the system
is trained to identify. We simply subtract the vec-
tor for man from the vector for woman and add it
to king. If the offset woman — man represents an
abstract gender feature, adding that offset to king
should lead us to gueen (Fig. 1).

If purely distributional representations success-
fully encode linguistic features and perform lin-
guistic tasks as well as humans do, algorithms that
rely on other sources of information may not be
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Figure 1: Using the vector offset method to solve
the analogy task (Mikolov et al., 2013c).

necessary to account for human learning (Reding-
ton et al., 1998). These cognitive considerations
lead us to conduct two additional experiments.
First, we evaluate how well humans solve the anal-
ogy task that we expect our VSMs to solve. Sec-
ond, we investigate how the quality of the repre-
sentations degrades as the size of the training cor-
pus approaches the amount of words that a child is
likely to be exposed to when learning a language.

An additional contribution of our study is
methodological. Although the offset method has
become a part of the battery of tests used to com-
pare VSMs, its properties are not always explored
in great detail. We focus in particular on under-
standing the extent to which this method reflects
the encoding of a linguistic feature in the geome-
try of the space.

A large and constantly expanding range of VSM
architectures have been proposed in the literature
(Mikolov et al., 2013a; Pennington et al., 2014;
Turney and Pantel, 2010). Instead of exploring the
full range of architectures, the present study will
focus on the skip-gram model, implemented in
word2vec (Mikolov et al., 2013b). This model
has been argued to perform either better than or
on a par with competing architectures, depending
on the task and on hyperparameter settings (Ba-
roni et al., 2014; Levy et al., 2015). Particularly
pertinent to our purposes, Levy et al. (2015) find
that the skip-gram model tends to recover formal
linguistic features more accurately than traditional
distributional models.

2 Quantificational words

We focus on words that quantify over the elements
of a domain, such as everyone or nowhere. We
restrict our attention to single words that include
the domain of quantification as part of their mean-
ing — that is, we exclude determiners (every) and
phrases (every person). The meaning of a quanti-
fier is determined by three factors: quantificational
force, polarity and domain of quantification. We

describe these factors in turn.

2.1 Quantificational force

We focus on universal and existential quantifica-
tional words, which can be translated into first-
order logic using a universal (V) or existential (3)
quantifier. For example, everybody and nobody are
both universal:

2) Everybody smiles:
Vx.person(x) — smiles(x)

A3) Nobody smiles:
Va.person(x) — —smiles(x)

Somebody is existential:

(4)  Somebody smiles:
dx.person(x) A smiles(x)

English has quantificational expressions that don’t
fall into either category (three people, most
things). Those are usually not encoded as a sin-
gle English word, and are therefore not considered
in this paper.

2.2 Polarity

Quantifiers that can be expressed as a single word
are in general either increasing or decreasing. A
quantifier is increasing if any predicate that is true
of the quantifier can be broadened without affect-
ing the truth value of the sentence (Barwise and
Cooper, 1981). For example, since everyone is in-
creasing, (5-a) entails (5-b):

) a. Everybody went out to a death metal
concert last night.

b. Everybody went out last night.

By contrast, in decreasing quantifiers such as no-
body the truth of broader predicates entails the
truth of narrower ones:

(6) a. Nobody went out last night.
b. Nobody went out to a death metal
concert last night.

2.3 Domain

We studied six domains. The first three domains
are intuitively straightforward: PERSON (e.g., ev-
erybody); OBJECT (e.g., everything); and PLACE
(e.g., everywhere). The three additional domains
are described below.



INC. DEc.

Universal Existential ~ Universal
PERSON everybody  somebody  nobody
OBJECT everything  something  nothing
PLACE everywhere somewhere nowhere
TIME always sometimes  never
MODAL must can cannot
MODAL V. require allow forbid

Table 1: All of the words tested in the experiments
(INC = Increasing, DEC = Decreasing).

TIME: Temporal adverbs such as always and
seldom are naturally analyzed as quantifying over
situations or events (Lewis, 1975; de Swart, 1993).
The sentence Caesar always awoke before dawn,
for example, can be seen as quantifying over wak-
ing events and stating that each of those events oc-
curred before dawn.

MODAL: Modal auxiliaries such as must or can
quantify over relevant possible worlds (Kripke,
1959). Consider, for example, the following sen-
tences:

@) a.  Anne must go to bed early.
b.  Anne can go to bed early.

Assuming deontic modality, such as the statement
of a rule, (7-a) means that in all worlds in which
the rule is obeyed, Anne goes to bed early, whereas
(7-b) means that there exists at least one world
consistent with the speaker’s orders in which she
goes to bed early.

MODAL VERB: Verbs such as request and forbid
can be paraphrased using modal auxiliaries: he al-
lowed me to stay up late is similar in meaning to he
said I can stay up late. 1t is plausible to argue that
allow is existential and increasing, just like can.

3 Evaluation

In what follows, we use the following notation
(Levy and Goldberg, 2014):

(8) a:a*:b:
The offset model is typically understood as in
Figure 1: the analogy task is solved by finding
x =a"—a+b. In practice, since the space is
continuous, x is unlikely to precisely identify a
word in the vocabulary. The guess is then taken
to be the word x* that is nearest to x:

2" = argmaxcos(z’,a* — a + b) (D
x/

where cos denotes the cosine similarity between
the vectors. This point has a significant effect on
the results of the offset method, as we will see be-
low. Following Mikolov et al. (2013c) and Levy
and Goldberg (2014), we normalize a, a* and b
prior to entering them into Equation 1.

Trivial responses: z* as defined above is al-
most always trivial: in our experiments the nearest
neighbor of « was either a* (11% of the time) or b
(88.9% of the time). Only in a single analogy out
of the 2160 we tested was it not one of those two
options. Following Mikolov et al. (2013c), then,
our guess x* will be the nearest neighbor of x that
is not a, a* or b.

Baseline: The fact that the nearest neighbor of
a* — a + b tends to be b itself suggests that a* — a
is typically small in comparison to the distance be-
tween b and any of its neighbors. Even if b is ex-
cluded as a guess, then, one might be concerned
that the analogy target b* is closer to b than any of
its neighbors. If that is the case, our success on the
analogy task would not be informative: our results
would stay largely the same if a* —a were replaced
by a random vector of the same magnitude. To ad-
dress this concern, we add a baseline that solves
the analogy task by simply returning the nearest
neighbor of b, ignoring a and a* altogether.

Multiplication: Levy and Goldberg (2014)
point out that the word z* that is closest to
a* — a + b in terms of cosine similarity is the one
that maximizes the following expression:

arg max(cos(2’,a*) — cos(2’, a) + cos(z’, b))
x/

2
They report that replacing addition with multi-
plication improves accuracy on the analogy task:

cos(z’, a*) cos(a’, b)

3)

arg ma
gmax cos(z’, a)

We experiment with both methods.

Synonyms: Previous studies required an exact
match between the guess and the analogy target
selected by the experimenter. This requirement
may underestimate the extent to which the space
encodes linguistic features, since the bundle of
semantic features expressed by the intended tar-
get can often be expressed by one or more other



words. This is the case for everyone and every-
body, prohibit and forbid or can’t and cannot. As
such, we considered synonyms of b* to be exact
matches. Likewise, we considered synonyms of a,
a* and b to be trivial responses and excluded them
from consideration as guesses.

This treatment of synonyms is reasonable when
the goal is to probe the VSM’s semantic represen-
tations (as it often is), but may be inappropriate for
other purposes. If, for example, the analogy task
is used as a method for generating inflected forms,
prohibiting would not be an appropriate guess for
like : liking :: forbid : __.

Partial success metrics: We did not restrict the
guesses to words with quantificational features:
all of the words in the vocabulary, including
words like penguin and melancholy, were poten-
tial guesses. In addition to counting exact matches
(z* = b*), then, we keep track of the proportion
of cases in which z* was a quantificational word
in one of the six relevant domains.

Within the cases in which x* was a quantifi-
cational word, we separately counted how often
x* had the expected domain, the expected polarity
and the expected force. To be able to detect such
partial matches, we manually added some words
to our vocabulary that were not included in the set
in Table 1. These included items starting with any,
such as anywhere or anybody, as well as additional
temporal adverbs (seldom, often).

Finally, we record the rank of b* among the 100
nearest neighbors of x, where a rank of 1 indi-
cates an exact match. It was often the case that
b* was not among the 100 nearest neighbors of x;
we therefore record how often b* was ranked at all.

4 Experimental setup

4.1 Analogies

For each ordered pair of domains (6 x 5 = 30
pairs in total), we constructed all possible analo-
gies where a and a* were drawn from one domain
(the source domain) and b and b* from the other
(the target domain). Since there are three words
per domain, we had six possible analogies per do-
main pair, for a total of 180 analogies.

Each set of four words was used to construct
multiple analogies. Those analogies are in general
not equivalent. For example, the words everybody,
nobody, everywhere and nowhere make up the fol-
lowing analogies:

) everybody : nobody :: everywhere : ___
(10)
(1D
(12)

The neighborhoods of everywhere and nobody
may well differ in density. Since the density of the
neighborhood of b affects the results of the offset
method, the result is not invariant to a permuta-
tion of the words in an analogy. It is, however, in-
variant to replacing a within-domain analogy with
an across-domain one. The following analogy is
equivalent to (9):

13)

This analogy would be solved by finding the near-
est neighbor of everywhere — everybody + nobody,
which is, of course, the same as the nearest neigh-
bor of nobody — everybody + everywhere used to
solve (9). We do not include such analogies.

nobody : everybody :: nowhere :
everywhere : nowhere :: everybody :

nowhere : everywhere :: nobody : ___

everybody : everywhere :: nobody : ___

4.2 VSMs

We trained our VSMs using the skip-gram
with negative sampling algorithm implemented in
hyperwords,! which extends word2vec to al-
low finer control over hyperparameters. The vec-
tors were trained on a concatenation of ukWaC
(Baroni et al., 2009) and a 2013 dump of the En-
glish Wikipedia, 3.4 billion words in total.

The skip-gram model has a large number of pa-
rameters. We set most of those parameters to val-
ues that have been previously shown to be effec-
tive (Levy et al., 2015); we list those values be-
low. We only vary three parameters that control
the context window. Syntactic category informa-
tion has been shown to be best captured by narrow
context windows that encode the position of the
context word relative to the focus word (Redington
et al., 1998; Sahlgren, 2006). Our goal in varying
these parameters is to identity the contexts that are
most conducive to recovering logical information.

Window size: We experimented with context
windows of 2, 5 or 10 words on either side of the
focus word (i.e., a window of size 2 around the
focus word consists of four context words).

Window type: When constructing the vector
space, the skip-gram model performs frequency-
based pruning: rare words are discarded in all

"https://bitbucket.org/omerlevy/hyperwords



cases and very frequent words are discarded prob-
abilisitically. We experimented with static and dy-
namic windows. The size of static windows is de-
termined prior to frequency-based word deletion.
By contrast, the size of dynamic windows is de-
termined after frequent and infrequent words are
deleted. This means that dynamic windows of-
ten include words that are farther away from the
focus words than the nominal window size, and
that words that tend to have very frequent func-
tion words around them will systematically have a
larger effective context window.

Context type: We experimented with bag-of-
words (nonpositional) contexts and positional con-
texts. In nonpositional contexts, a context word
cat is treated in the same way regardless of its dis-
tance from the focus word and of whether it fol-
lows or precedes it. In positional contexts, on the
other hand, context words are annotated with their
position relative to the focus words; the context
word cat~? is considered to be distinct from cat*.

Fixed hyperparameters: We used the follow-
ing values for the rest of the hyperparameters:
500-dimensional words vectors; 15 negative sam-
ples per focus word; words with a frequency of
less than 100 were discarded; words with uni-
gram probability above 10™° were probabilisti-
cally discarded (preliminary experiments showed
that a 10~ threshold reduced performance across
the board); negative samples were drawn from the
unigram frequency distribution, after that distribu-
tion was smoothed with exponent = 0.75; we
performed one iteration through the data.

5 Results

Offset method: Overall accuracy was fairly low
(mean: 0.29, range: 0.23 —0.35), somewhat lower
than the 0.4 accuracy that Mikolov et al. (2013c¢)
report for their syntactic features. Strikingly, b*
was among the 100 nearest neighbors of x only in
70% of the cases. When the guess was a quantifi-
cational word (61% of the time), it was generally
in the right domain (93%). Its polarity was correct
72% of the time, and its force 54% of the time.

The static nonpositional 5-word VSM achieved
the best accuracy (35%), best average rank (5.5)
and was able to recover the most quantificational
features (polarity: 82% correct; force: 63% cor-
rect; both proportions are conditioned on the guess
being a quantificational word).

Size Context Window B O M O-B
2 Nonpos Dynamic .08 .32 .34 24
2 Nonpos Static 06 23 24 17
2 Pos Dynamic .06 .29 .32 24
2 Pos Static 06 24 27 .19
5 Nonpos Dynamic .07 .28 .29 22
5 Nonpos Static A1 35 36 24
5 Pos Dynamic .03 .29 .31 27
5 Pos Static 06 28 .29 .23

10 Nonpos Dynamic .08 .28 .29 .19
10 Nonpos Static A7 31 31 .14
10 Pos Dynamic .17 .32 .31 .16
10  Pos Static A1 .26 .26 .15
Table 2: Results on all hyperparameter set-

tings, evaluated using three methods: B(aseline),
O(ffset) and M(ultiplication).

Alternatives to the offset method: In line with
the results reported by Levy and Goldberg (2014),
we found that substituting multiplication for ad-
dition resulted in slightly improved performance
in 10 out of 12 VSMs, though the improvement
in each individual VSM was never significant ac-
cording to Fisher’s exact test (Table 2). If we take
each VSM to be an independent observation, the
difference across all VSMs is statistically signifi-
cant in a t-test (¢t = 2.45, p = 0.03).

The baseline that ignores a and a* altogether
reached an accuracy of up to 0.17, sometimes ac-
counting for more than half the accuracy of the
offset method. The success of the baseline is sig-
nificant, given that chance level is very low (recall
that all but the rarest words in the corpus were pos-
sible guesses). Still, the offset method was signifi-
cantly more accurate than the baseline in all VSMs
(10712 < p < 0.003, Fisher’s exact test).

Differences across domains: We examine the
performance of the offset method in the best-
performing VSM in greater detail. There were
dramatic differences in accuracy across target do-
mains. When b* was a PERSON, guesses were cor-
rect 73% of the time; the correct guess was one
of the top 100 neighbors 87% of the time, and its
average rank was 1.31. Conversely, when b* was
a MODAL VERB, the guess was never correct; in
fact, b* was one of the 100 nearest neighbors of x
only 7% of the time, and the average rank in these
cases was 59. Variability across source domains
was somewhat less pronounced. Fig. 2a shows the
interaction between source and target domain.



In light of the differences across domains, we
repeated our investigation of the influence of con-
text parameters, this time restricting the source
and target domains to PERSON, PLACE and OB-
JECT. Exact match accuracy ranged from 0.5 for
the static nonpositional 2-word window to 0.83 for
the static nonpositional 5-word window. The lat-
ter VSM achieved almost perfect accuracy in cases
where the guess was a quantificational word (do-
main: 1.0, polarity: 0.97, force: 1.0). We conclude
that in some domains logical features can be ro-
bustly recovered from distributional information.

Effect of context parameters: Overall, the in-
fluence of context parameters on accuracy was not
dramatic. When the VSMs are compared based on
the extent that the offset method improves over the
baseline (O - B in Table 2), a somewhat clearer
picture emerges: the improvement is greatest in
intermediate window sizes, either 5-word win-
dows or dynamic 2-word windows. This contrasts
with findings on the acquisition of syntactic cat-
egories, where narrower contexts performed best
(Redington et al., 1998), suggesting that the cues
to quantificational features are further from the fo-
cus word than cues to syntactic category.

One candidate for such a cue is the word’s com-
patibility with negative polarity items (NPI) such
as any. NPIs are often licensed by decreasing
quantifiers (Fauconnier, 1975): nobody ate any
cheese is grammatical, but *everybody ate any
cheese isn’t. Whereas contextual cues to syntac-
tic category—e.g., the before nouns—are often di-
rectly adjacent to the focus word, any will typi-
cally be part of a different constituent from the fo-
cus word, and is therefore quite likely to fall out-
side a narrow context window.

We did not find a systematic effect of the type of
context (positional vs. nonpositional). However,
as Section 7 below shows, this parameter does af-
fect performance when the VSMs are trained on
smaller corpora.

6 How well do humans do the task?

Some of the analogies are intuitively fairly diffi-
cult: quantification over possible deontic worlds
(require vs. forbid) is quite different from quan-
tification over individuals (everybody vs. nobody).
Those are precisely the domains in which the
VSMs performed poorly. Are we asking too much
of our VSM representations? Can humans per-

form this task??

To answer this question, we gave the same
analogies to human participants recruited through
Amazon Mechanical Turk. We divided our 180
quantificational analogies into five lists of 36
analogies each. Each list additionally contained
four practice trials presented in the beginning of
the list and ten catch trials interspersed throughout
the list. These additional trials contained simple
analogies, such as big : bigger :: strong : ___ or
brother : sister :: son : . Each of the lists was
presented to ten participants (50 participants in to-
tal). They were asked to type in a word that had
the same relationship to the third word as the first
two words had to each other.

We excluded participants that made more than
three mistakes on the catch trials (three partic-
ipants) as well as one participant who did not
provide any answer to some of the questions.
While mean accuracy varied greatly among sub-
jects (range: 0.22 — 1; mean: 0.68; median: 0.69;
standard deviation: 0.17), it was in general much
higher than the accuracy of the VSMs.

Fig. 2b presents the human participants’ aver-
age accuracy by source and target domain. Mean
accuracy was 0.45 or higher for all combinations
of source and target domains. Logistic regression
confirmed that having MODAL VERB and MODAL
as either the source or target domain led to lower
accuracy. There were no statistically significant
differences between those two domains or among
the remaining four domains, with the exception of
TIME as a target domain, which was less accurate
than PLACE, OBJECT and PERSON.

The VSMs did not have access to the
morphological structure of the words.  This
makes the comparison with humans difficult:
it is hard to see how human participants
could be stopped from accessing that knowl-
edge when performing an analogy such as
nowhere : somewhere :: nobody : __. Notably,
however, the difference in performance between
the morphologically marked domains and the

2These two questions are highly related from our cogni-
tive modeling perspective, but in general it is far from clear
that human performance on a logical task is an appropriate
yardstick for a computational reasoning system. In the do-
main of quantifier monotonicity, in particular, there are doc-
umented discrepancies between normative logic and human
reasoning (Chemla et al., 2011; Geurts and van Der Slik,
2005). In many cases it may be preferable for a reasoning
system to conform to normative logic rather than mimic hu-
man behavior precisely.
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Figure 2: On the left: accuracy of the best model (static nonpositional 5-word context), broken down by
source (in the y-axis) and target (in the x-axis) domain. On the right: human responses.

other domains is if anything more marked in the
VSMs than in humans. Moreover, there is a fairly
small difference in the accuracy of our human par-
ticipants between PLACE and TIME as target do-
mains, even though the former is morphologically
marked and the latter isn’t.

7 Cognitively plausible corpus sizes

Distributional information is crucial for learning
the meaning of words such as quantificational
words that do not have a clear correlate in visual
experience (Gleitman et al., 2005). Is the infor-
mation captured by the VSMs we have consid-
ered sufficient for acquiring quantificational words
under cognitively plausible circumstances? The
ideal testing ground for this question would be in-
fant directed speech corpora. As a first step, how-
ever, we investigate how the VSMs perform when
trained on subsets of our training corpus that con-
tain an amount of data that a human might en-
counter when learning a language.

Hart and Risley (1995) estimate that American
children are exposed to between 3 and 11 mil-
lion words every year, depending on the socioeco-
nomic status of their family. We sampled four sub-
corpora from our Wikipedia corpus, with 100K,
1M, 3M and 10M sentences. As the average sen-
tence length in the corpus is 18 words, the corpora
contained 1.8M, 18M, 54M and 180M tokens, re-
spectively. The 1M and 3M sentence corpora rep-
resent plausible amounts of exposure for a child.

Given that VSM accuracy was low in some of
the domains even when the spaces were trained
on 3.4G tokens, we limit our experiments in this
section to the OBJECT and PERSON domains. We

1.0,

0.8t
0.6}
0.4 ]
Nonpos

0.2t

0.0

100K M 3M 10M 188M

Figure 3: Effect of training corpus size on the ac-
curacy of the analogy task, averaged across vector
size and window size.

made two changes to the hyperparameters settings
that were not modulated in the VSMs trained on
the full corpus. First, we lowered the threshold for
rare word deletion (100K / 1M sentences: 10; 3M
sentences: 50; 10M sentences: 100). Second, we
experimented with smaller vectors (100, 300 and
500), under the assumption that it may be more
difficult to train large vectors on a small data set.
We again experimented with window sizes of 2, 5
and 10 words on either side of the focus word and
with positional and nonpositional contexts. The
size of the windows was always static.

Fig. 3 shows the accuracy of the analogy task
averaged across vector sizes and window sizes.
VSMs trained on the 100K and 1M subcorpora
completely failed to perform the task: with the
exception of one model that performed one out
the 12 analogies correctly, accuracy was always
0. The VSMs trained on the 3M and 10M sen-
tences subcorpora perform better (between 0.27
and 0.39 on average), though still much worse than
the VSMs trained on the full corpus. The type



of context had a large effect on the success of the
model: positional contexts trained on the 3M sub-
corpus completely failed to do the task, whereas
on the 10M subcorpus they performed better than
nonpositional ones. The performance advantage
of positional contexts was larger on the 10M cor-
pus than on the full corpus.

The degraded performance of the VSMs on
smaller training corpora suggests that bag-of-
words distributional information alone is unlikely
to be sufficient for the acquisition of quantifica-
tion. An adequate cognitive model would need to
consider richer types of context, such as syntactic
context and discourse structure, or to make explicit
reference to the way these words are used in logi-
cal reasoning.

8 Related work

There is a large body of work on the evaluation of
VSMs (Turney and Pantel, 2010; Hill et al., 2015).
A handful of recent papers have looked at distri-
butional representations of logical words. Baroni
et al. (2012) extracted corpus-based distributional
representations for quantifier phrases such as all
cats and no dogs, and trained a classifier to detect
entailment relations between those phrases; for ex-
ample, the classifier might learn that all cats en-
tails some cats. Bernardi et al. (2013) introduce a
phrase similarity challenge that relies on the cor-
rect interpretation of determiners (e.g., orchestra
is expected to be similar to many musicians), and
use it to evaluate VSMs and composition methods.
Hermann et al. (2013) discuss the difficulty of ac-
counting for negation in a distributional semantics
framework.

Another line of work seeks to combine the
graded representations of content words such as
mammal or book with a symbolic representation
of logical words (Garrette et al., 2014; Lewis and
Steedman, 2013; Herbelot and Vecchi, 2015). Our
work, which focuses on the quality of graded rep-
resentation of logical words, can be seen as largely
orthogonal to this line of work.

Finally, our study is related to recent neural net-
work architectures designed to recognize entail-
ment and other logical relationships between sen-
tences (Bowman et al., 2014; Rocktischel et al.,
2015). Those systems learn word vector represen-
tations that are optimized to perform an explicit
entailment task (when trained in conjunction with
a compositional component). In future work, it

may be fruitful to investigate whether those repre-
sentations encode logical features more faithfully
than the unsupervised representations we experi-
mented with.

9 Conclusion

The skip-gram model, like earlier models of dis-
tributional semantics, represents words in a vec-
tor space using only their bag-of-words contexts
in a corpus. We tested whether the representations
that this model acquires for words with quantifica-
tional content encode the logical features that the-
ories of meaning predict they should encode. We
addressed this question using the offset method for
solving the analogy task, ¢ : a* :: b : __ (e.g.,
everyone : someone :: everywhere : __).

We made several methodological observations
regarding this method, expanding on Levy and
Goldberg (2014). First, when implemented liter-
ally the guess it provides is almost always trivial
(either a* or b), casting doubt on a strong geomet-
ric interpretation of its results. Second, requiring
an all-or-nothing match with an intended analogy
target is too stringent: this evaluation method as-
sesses the encoding of multiple semantic features
at once, and doesn’t take into account the fact that
a bundle of semantic features can be expressed
in multiple ways (e.g., can’t and cannot). Most
importantly, given the central role of cosine simi-
larity in the offset method, this method should be
evaluated relative to a baseline that only takes sim-
ilarity to b into account, ignoring a and a*.

These issues aside, we showed that distribu-
tional methods successfully recovered quantifi-
cational features. Accuracy was higher when
the context window was of an intermediate size,
sometimes approaching 100% on simpler do-
mains. Performance on other domains was poorer,
however. Humans given the same task also
showed variability across domains, but achieved
better accuracy overall, suggesting that there is
room for improving the VSM representations. Fi-
nally, accuracy dropped dramatically when train-
ing corpus size approached the amount of words
that a child might be exposed to when learning the
language. This suggests that bag-of-words distri-
butional methods are inefficient, and that human
learning of quantificational features relies on ad-
ditional, more structured sources of information.
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