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Abstract

There is now considerable evidence that human sentence processing is expectation based: As peo-

ple read a sentence, they use their statistical experience with their language to generate predictions

about upcoming syntactic structure. This study examines how sentence processing is affected by

readers’ uncertainty about those expectations. In a self-paced reading study, we use lexical subcate-

gorization distributions to factorially manipulate both the strength of expectations and the uncertainty

about them. We compare two types of uncertainty: uncertainty about the verb’s complement, reflect-

ing the next prediction step; and uncertainty about the full sentence, reflecting an unbounded number

of prediction steps. We find that uncertainty about the full structure, but not about the next step, was

a significant predictor of processing difficulty: Greater reduction in uncertainty was correlated with

increased reading times (RTs). We additionally replicated previously observed effects of expectation

violation (surprisal), orthogonal to the effect of uncertainty. This suggests that both surprisal and

uncertainty affect human RTs. We discuss the consequences for theories of sentence comprehension.

Keywords: Sentence processing; Uncertainty; Prediction; Entropy reduction; Surprisal;

Competition

1. Introduction

One of the major challenges that readers face when processing a sentence is inferring

its syntactic structure (parsing it). There is growing evidence that people parse sentences

in an incremental and predictive fashion: Each incoming word is used to revise existing

hypotheses about the correct parse of the sentence and predict upcoming syntactic

structure (Altmann & Kamide, 1999; Federmeier, 2007; Hale, 2001; Levy, 2008). These
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predictions are probabilistic: There is a continuous relationship between predictability and

processing difficulty (Boston, Hale, Kliegl, Patil, & Vasishth, 2008; Demberg & Keller,

2008; Jennings, Randall, & Tyler, 1997; McDonald & Shillcock, 2003a,b). This likely

reflects a strategy whereby readers prepare to process upcoming linguistic material in pro-

portion to its probability (DeLong, Urbach, & Kutas, 2005; Smith & Levy, 2013).

As an example, consider the sentence in (1):

(1) He accepted the proposal was wrong.

The verb accept can be followed by two types of complements, or subcategorization
frames: a noun phrase (as in accept a gift) or a sentential complement (as in accept that
you have lost). In actual usage, accept occurs much more frequently with the noun phrase

(NP) frame than with the sentential complement (SC) frame. Having read the word ac-
cepted, then, the reader can form a strong prediction for an NP, and possibly a weaker

prediction for an SC (Fig. 1a, b). The next words, the proposal, are compatible with both

parses: They can either serve as the verb’s direct object or as the subject of an SC

(Fig. 1c, d). Finally, the words was wrong disambiguate the sentence in favor of the low-

probability SC parse. In line with the predictive parsing hypothesis, the disambiguating

(a) (b)

(d)(c)

Fig. 1. Incremental parses with single-step prediction while reading the sentence he accepted the proposal
was wrong. (a) and (b) represent parses after the verb has been read and its complement type has been pre-

dicted. (c) and (d) represent the parses after the ambiguous region the proposal has been incorporated into (a)

and (b), respectively.
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region was wrong tends to be read more slowly when the verb favors the NP frame (e.g.,

accept) than when it favors the SC frame (e.g., prove) (Garnsey, Pearlmutter, Myers, &

Lotocky, 1997; Trueswell, Tanenhaus, & Kello, 1993).

While there is ample evidence that expectation violation, as in the example just dis-

cussed, can lead to processing difficulty, less is known about the generation and mainte-

nance of those expectations. Suppose, for example, that the verb accepted in sentence (1)

were replaced by forgot. The verb forget is similar to accept in that it is biased against

an SC continuation, but differs from it in that it has a more diverse set of potential com-

plements. Specifically, in addition to an NP (forgot my birthday, 55%) and an SC (forgot
he was supposed to go, 9%), this verb can be followed by a prepositional phrase (forgot
about the party, 18%) or an infinitive (forgot to buy groceries, 14%). Consequently, there

is a greater degree of uncertainty about upcoming syntactic structure after forget than

after accept. Does this difference between forget and accept affect processing difficulty,

and if so, how?

Following standard practice, we quantify uncertainty about a probabilistic outcome

using the Shannon entropy of the distribution as follows:

H ¼ �
Xn

i¼1

pi log2 pi:

Entropy is higher the more potential parse completions there are and the more uniformly

distributed the probabilities of those parses are. For instance, when there is only one

parse completion, the entropy is 0 bits. With two equiprobable completions the entropy is

1 bit, and with three equiprobable options the entropy is 1.58 bits. If one of the three

options is much more likely than the others, the entropy can be lower than the entropy of

two equiprobable options (see Fig. 2).

We focus on two ways in which readers’ uncertainty about syntactic expectations, as

quantified by entropy, may affect processing difficulty. First, it may be costly to generate

and maintain a larger number of predictions that compete with each other, especially if

their probabilities are similar. We term this hypothesis the competition hypothesis (Elman,

Hare, & McRae, 2005; McRae, Spivey-Knowlton, & Tanenhaus, 1998). A second hypoth-

esis, the entropy reduction hypothesis, proposes that it is reduction in uncertainty that is

costly rather than the mere existence of uncertainty (Hale, 2006; Yun, Chen, Hunter,

Whitman, & Hale, 2015). Under this hypothesis, an increase in uncertainty does not

affect processing; that is, if Hi is the entropy at the i-th word, then entropy reduction at

the i-th word is given by max{Hi � Hi�1, 0}.
The examples discussed so far have focused on the expectations that comprehenders

generate immediately after processing a verb based on its subcategorization frequencies—
in other words, expectations for the next immediate node in the parse tree following the

verb (Fig. 1). Yet it is possible that readers generate more detailed syntactic predictions,

consisting of multiple derivation steps. For instance, instead of simply predicting an NP,

they might probabilistically predict both an NP consisting of a determiner and a noun
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(the present) and an NP consisting of a determiner, an adjective, and a noun (the nice
present) (Fig. 3). The depth of syntactic structure predicted by readers is an open ques-

tion. We investigate two endpoints of the prediction depth spectrum—prediction of the

next syntactic step of the derivation (single-step prediction) and prediction of the entire

syntactic structure of the sentence (full prediction).
A number of recent studies have begun to explore the effect of uncertainty on reading

times (RTs; Frank, 2013; Hale, 2003, 2006; Roark, Bachrach, Cardenas, & Pallier, 2009;

Wu, Bachrach, Cardenas, & Schuler, 2010; Yun et al., 2015) and neural measures (Frank,

Otten, Galli, & Villioco, 2015; Willems, Frank, Nijhof, Hagoort, & van den Bosch,

2015), some with positive results. However, as we detail next, the conclusions that can

be drawn from these studies are limited by the considerable variability between them, as

well as lack of critical controls. This state of affairs has led others to question the extent

to which these studies provide support for the role of uncertainty-based hypothesis, in

(a) (b)

(d)(c)

Fig. 2. Entropy values for four examples of subcategorization distributions: (a) two balanced frames; (b) two

unbalanced frames; (c) three balanced frames; (d) three unbalanced frames. When probability is evenly dis-

tributed across subcategorization frames, verbs with more frames have a higher entropy (compare (a) to (c)).

For the same number of frames, entropy is lower the less balanced the distribution (compare (a) to (b), or (c)

to (d)).
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particular the entropy reduction hypothesis (Levy & Gibson, 2013). We begin by summa-

rizing the previous studies; we then present the motivation for the current study.

2. Previous work on entropy in sentence processing

One class of studies has demonstrated that the entropy reduction hypothesis can predict

qualitative findings from the sentence processing literature, such as the processing diffi-

culty at the disambiguation point in garden path sentences (the horse raced past the barn

(a) (c)

(d)(b)

Fig. 3. Predicting syntactic structure an unlimited number of derivation steps ahead: In addition to predicting

the category of the complement (NP or SC), the reader predicts its internal structure. (a) Prediction of a sim-

ple determiner + noun phrase (he accepted the present); (b) prediction of a noun phrase with an adjective (he
accepted the nice present); (c) prediction of an SC with an intransitive verb (he accepted that he lost); (d)
prediction of an SC with a transitive verb (he accepted that he lost her).
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fell; Hale, 2003) or the asymmetry between object and subject relative clauses (Yun

et al., 2015). These predictions have not been evaluated on empirical RTs and the studies

have not controlled for alternative sources for the difference in processing difficulty

between the constructions, such as surprisal (Hale, 2001), memory cost (Grodner &

Gibson, 2005), or similarity based interference (Lewis & Vasishth, 2005).

Other studies have assessed the effect of entropy in reading time corpora (Frank, 2013;

Roark et al., 2009; Wu et al., 2010). Roark et al. (2009) found a positive effect of

entropy over syntactic parses, supporting the competition hypothesis. Support for the

entropy reduction hypothesis comes from two studies: Wu et al. (2010) found that

entropy reduction had a positive effect on RTs, though only for closed class words, and

Frank (2013) found a positive effect of entropy reduction for all words.

Several factors limit the information that can be gained from these studies. Foremost,

most previous studies did not directly compare the competition and entropy reduction

hypothesis. This is problematic since entropy and entropy reduction effects will tend to

be highly correlated (this is confirmed in the present study). A comparison across these

previous studies is further made difficult by methodological differences between these

studies. First, previous work has used a wide variety of syntactic models, ranging from

connectionist networks (Frank, 2013) through unlexicalized (Hale, 2003) and lexicalized

probabilistic context-free grammars (Roark et al., 2009) to Hierarchical Hidden Markov

Models (Wu et al., 2010). It is thus unclear to what extent the divergent results of previ-

ous studies are due to differences in representational assumptions.

Second, the studies differed substantially in the way in which entropy (and thus

entropy reduction) was calculated. For example, Hale (2003) calculated entropy over full

sentences (full entropy); this measure includes uncertainty both about the analysis of the

part of the sentence read so far and about the rest of its structure. This contrasts with the

entropy measure employed by Frank (2013), which captures uncertainty about a few

upcoming words (that study used a neural network that does not represent syntactic ambi-

guity and therefore never has any uncertainty about the correct analysis of the past). The

approach taken by Roark et al. (2009) falls between these two extremes, in that it cap-

tures uncertainty about the analysis of the part of the sentence read so far, as well as

uncertainty about the syntactic structure that would need to be constructed to accommo-

date a single upcoming word.

Third, some authors evaluated the entropy reduction hypothesis while assuming that

increases in entropy facilitate processing (Frank, 2013), contrary to formulation of the

entropy reduction hypothesis (Hale, 2006). In some cases, effects of entropy reduction

and of entropy may differ only in their sign (see below), making it impossible to distin-

guish between the competition and entropy reduction hypothesis as formulated by Hale

(2006).

Finally, most previous studies examined processing difficulty across different types of

structures, potentially confounding structural differences (and, e.g., correlated differences

in memory cost, cf. Gibson, 1998) with differences in entropy. Taken together, these dif-

ferences limit the conclusions that can be drawn from previous work about the role of

uncertainty during language processing.
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3. Contribution of the paper

As mentioned above, some researchers have questioned the viability of entropy reduc-

tion as a predictor of processing, in part because of the complicating factors listed above

(Levy & Gibson, 2013). The goal of the current study is to assess the effects of entropy

and entropy reduction in the same materials, within the same syntactic framework, while

avoiding structural confounds.

Following Roark et al. (2009), we evaluate the predictions of uncertainty-related

hypotheses on human RTs. Following Hale (2003), we undertake a detailed experimental

and computational analysis of a specific class of sentences, using a simple syntactic

framework: a probabilistic context-free grammar (PCFG) based on the Penn Treebank

(Marcus, Marcinkiewicz, & Santorini, 1993). We emphasize two distinctions that are not

always clearly highlighted in the literature. First, we distinguish entropy effects from

entropy reduction effects. Positive correlations between entropy and reading times are

predicted by the competition hypothesis, whereas positive correlations between entropy

reduction and reading times are predicted by the entropy reduction hypothesis (cf. Hale,

2006). Second, we compare uncertainty in single-step prediction and uncertainty in full

prediction. The entropy reduction hypothesis (as formulated in Hale, 2006) predicts only

that the latter should be correlated with RTs. This distinction is thus critical, but so far it

has received little attention in the literature, which has employed a variety of different

measures of entropy and entropy reduction under the implicit assumption that they are

interchangeable. The results of the current study show that uncertainty in single-step

prediction and uncertainty in full prediction can differ dramatically and exhibit qualita-

tively different correlations with RTs.

To avoid the potential confounds associated with comparing RTs across constructions,

we manipulate syntactic uncertainty while keeping constant syntactic structure and associ-

ated confounding factors such as memory cost. We do so by varying the syntactic expecta-

tions induced by specific lexical items, as in the case of accept compared to forget above.
Much previous work has shown that syntactic expectations in human language processing

are sensitive to lexical information (Garnsey et al., 1997; Linzen, Marantz, & Pylkk€anen,
2013; McRae et al., 1998; Spivey-Knowlton & Sedivy, 1995; Trueswell et al., 1993).

We first describe an RT experiment in which we vary single-step entropy by comparing

verbs with different subcategorization distributions. We then discuss the relationship between

single-step and full entropy, and assess how well each of these measures predicts RTs.

4. Reading time experiment

The design of the experiment was modeled after Garnsey et al. (1997). Half of the sen-

tences read by a given participant included the complementizer that, as in (2a) (hence-

forth referred to as unambiguous sentences), and half did not, as in (2b) (henceforth

ambiguous sentences). We refer to this factor as Ambiguity.
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(2) a. The men discovered that the island had been invaded by the enemy.
subject verb that ambiguous disambiguating rest

b. The men discovered the island had been invaded by the enemy.
subject verb ambiguous disambiguating rest

For consistency with previous studies, we refer to the subject of the embedded clause

(the island) as the ambiguous region even when the sentence is unambiguous; likewise, we

refer to the verbal complex has been invaded as the disambiguating region in both sentence

types. In addition to the within-item ambiguity manipulation, two factors were manipulated

between items: the subcategorization entropy of the main verb (high vs. low) and the sur-

prisal of an SC given the verb (high vs. low). Subcategorization frequencies were taken

from Gahl, Jurafsky, and Roland’s (2004) database (described in more detail below). We

quantified SC bias using the surprisal (inverse log probability) of an SC given the verb

rather than raw conditional probability, based on evidence that the relationship between

conditional probability and processing difficulty is logarithmic (Smith & Levy, 2013).

To factorially cross subcategorization entropy and surprisal, we leveraged the fact that

many verbs occur with frames other than SC and NP.1 For example, find and propose
have a similar SC subcategorization probability (0.22 and 0.25, respectively) and thus

similar SC surprisal. But propose occurs with multiple other frames (NP: 0.57; infinitives:

0.14), whereas for find the NP frame is the only alternative to SC that occurs with a sub-

stantial probability (0.72). As a result, propose has higher subcategorization entropy than

find (1.56 vs. 1.09).

4.1. Predictions

In summary, the RT study used a 2 9 2 9 2 design: Ambiguity 9 subcategorization

entropy 9 SC surprisal. If increased uncertainty causes a processing slowdown, as argued

by the competition hypothesis, RTs at the verb region will be longer in the high subcate-

gorization entropy conditions. Conversely, if it is reduction in uncertainty that causes pro-

cessing slowdown, as argued by the entropy reduction hypothesis, we expect longer RTs

on verbs with lower subcategorization entropy: Since entropy before the verb is matched

across conditions (see below), verbs with lower subcategorization entropy reduce uncer-

tainty more than verbs with higher subcategorization entropy. Finally, surprisal (Hale,

2001) predicts that disambiguation in favor of an SC parse will be more costly for high

SC surprisal verbs than for low SC surprisal verbs (Garnsey et al., 1997). This should

only occur in ambiguous sentences.

4.2. Method

4.2.1. Participants
A total of 128 participants were recruited through Amazon Mechanical Turk and were

paid $1.75 for their participation. Participants took 17 minutes on average to complete

the experiment (SD = 4.1 minutes).
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4.2.2. Materials
We selected 32 verbs, eight in each of the cells of the 2 9 2 design defined by subcat-

egorization entropy and SC surprisal. Subcategorization frequencies were obtained from

the database of Gahl et al. (2004), which is based on the 18 million words of text com-

prising the Touchstone Applied Science Associates corpus (Zeno, Ivens, Millard, & Duv-

vuri, 1995) and the Brown corpus (Francis & Ku�cera, 1982). Gahl et al. (2004) classify
subcategorization frames into six categories: transitive (Klaus adore cookies), intransitive
(we watched attentively), quote (he said “that’s fine by me”), finite sentential complement

(Trent yelled (that) the road was in sight), infinitival complement (she wanted to share
her insight with others), and “other.”2 Verbs were matched across conditions for their fre-

quency and length. Frequency norms were obtained from the SUBTLEX-US corpus

(Brysbaert & New, 2009). Table 1 shows the mean values and standard deviations across

conditions for log-transformed verb frequency, subcategorization entropy, and SC sur-

prisal.

In the next step, 32 sentence pairs were created, one for each verb (a list of all items

is provided in Appendix A). Each pair contained one version of the sentence with the

complementizer that after the verb and one without it (64 sentences in total). The main

subjects of the sentences were chosen to be minimally informative two-word noun

phrases (e.g., the men, they all), to avoid biasing the distribution over verb complement

frames ahead of the verb. The same eight main subjects were used in all four conditions.3

Following the complementizer (or the verb, if the complementizer was omitted) was a

definite noun phrase (the island), which was always a plausible direct object of the

verb (following Garnsey et al., 1997).4 The frequency of this noun was matched across

conditions.

The disambiguating region consisted of three words: either two auxiliary verbs (had
been) or an auxiliary verb and negation (might not), followed by the past participle of a

verb (invaded). Each of the function words appeared the same number of times in

each condition. The verbs (invaded) were matched across conditions for frequency and

length. The disambiguating region was followed by three more words, which were not

analyzed.

Table 1

Lexical variables

Condition Subcategorization Entropy SC-Surprisal Frequency (log)

Low entropy/low surprisal 1.13 (0.08) 1.52 (0.55) 3.64 (1.56)

Low entropy/high surprisal 1.09 (0.18) 4.15 (1.03) 4.31 (2.01)

High entropy/low surprisal 1.7 (0.12) 1.58 (0.45) 3.6 (1.24)

High entropy/high surprisal 1.68 (0.17) 3.86 (0.79) 3.85 (1.25)

Notes. Mean subcategorization entropy, SC surprisal, and log-transformed frequency of the main verb in

each of the conditions of the factorial design. We use Entropy to refer to high versus low subcategorization

frame entropy (i.e., single-step entropy at the verb) and Surprisal to refer to high versus low sentential com-

plement surprisal. Standard errors are shown in parentheses.
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In addition to the target sentences, the experiment included 64 filler sentences. These

sentences contained various complex syntactic structures. The target sentences were sepa-

rated from each other by at least one filler item. The first four trials always consisted of

filler items to familiarize the participants with the task.

Eight experimental lists were created as follows. The 32 items were randomized such

that sets of four consecutive items had one item of each condition (with fillers inter-

spersed). The complementizer was omitted in every other item, counterbalanced across

Lists 1 and 2. Lists 3 and 4 were obtained by reversing the order of presentation in Lists

1 and 2. The randomization procedure was then repeated to generate Lists 5 through 8.

Each list was assigned to 16 participants.

4.2.3. Procedure
Sentences were presented word by word in a self-paced moving window paradigm

(Just, Carpenter, & Woolley, 1982). After each trial, the participants were presented with

a Y/N comprehension question to ensure that they were paying attention to the meaning

of the sentence. Participants did not receive feedback on their responses. The experiment

was conducted online using a Flash application written by Hal Tily. Participants took

17 minutes on average to complete the experiment (SD = 4.1 minutes).

4.2.4. Preprocessing
Following standard procedure, individual words were excluded if their raw RTs were

less than 100 ms or more than 2,000 ms. All RTs were log-transformed to reduce right

skew (Baayen & Milin, 2010; Fine & Jaeger, unpublished data; Frank, 2013). If a word’s

log-transformed RT was more than 3 SDs higher or lower than the participant’s mean

log-transformed RT, the word was excluded. RTs were then length-corrected by taking

the residuals of a mixed-effects model which had log-transformed RT as the response

variable, word length as a fixed effect, and a by-subject intercept and slope (following,

e.g., Fine et al., 2013). Again following standard procedure, all trials including fillers

were entered into the length-correction model.

Two subjects were excluded because their answer accuracy was lower than 75%. The

results reported in what follows are based on the remaining 126 subjects.

4.2.5. Statistical analysis
The resulting by-region length-corrected RTs were analyzed using linear mixed-ef-

fects models in R (Bates, Maechler, & Bolker, 2012), with crossed random effects for

subjects and items. We used a maximal random effect structure: for items, a slope for

sentence ambiguity; for subjects, slopes for all of the predictors and their interactions.

In case the model fitting procedure did not converge, we removed the random slopes

for the highest order interactions and refitted the model.5 The p-values for fixed effects

were calculated using model comparison with a simpler model with the same random

effect structure but without the fixed effect in question (following Barr, Levy, Scheep-

ers, & Tily, 2013).6
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4.3. Results

4.3.1. Accuracy
Comprehension accuracy, including on fillers, was high (M = 95.8%, SD = 5.6%). To

test whether accuracy differed between conditions, a mixed-effects logistic regression

model (Jaeger, 2008) was fitted to the responses to the comprehension questions (exclud-

ing fillers). There were no significant main effects or interactions (all ps > .1, Wald

statistic), indicating that accuracy was similarly high across conditions. For the RT analy-

ses, we analyzed all critical trials, regardless of accuracy.

4.3.2. Reading times
Mean RTs averaged within each region are shown in Fig. 4 (see also word-by-word

RTs in Fig. 8 in Appendix C). Following previous work (Garnsey et al., 1997), we

split the sentences into five regions: subject, verb, ambiguous region, disambiguating

region, and the rest of the sentence (see (2) above). Only the first four regions were

statistically analyzed. Length-corrected RTs were averaged for each region of a given

trial, and linear mixed effects models were fitted within each region. The results for

all regions are summarized in Table 2.
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Fig. 4. Mean reading times (RTs). Error bars show bootstrapped 95% confidence intervals.
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4.3.2.1. Subject region: No effects reached significance (all ps > .1).

4.3.2.2. Verb region: Subcategorization entropy did not have a significant effect on RTs

(p > .5). RTs in this region therefore do not support either the competition hypothesis or

the entropy reduction hypothesis in their single-step form. Additional follow-up analyses

that included a one-word spillover region in the verb analysis likewise failed to find an

effect of entropy. Unexpectedly, low SC surprisal verbs were read more slowly, though

this difference was only marginally significant (p = .09). None of the theories considered

here predict an effect of SC surprisal at the verb: At the verb, readers do not yet know

the category of the upcoming syntactic complement. We return to this trend when we dis-

cuss the full entropy analysis below, as it offers an alternative explanation for this appar-

ent effect of SC surprisal.

4.3.2.3. Ambiguous region: The subject of the embedded clause (the “ambiguous

region”) was read faster in unambiguous sentences than in ambiguous sentences

(p < .001). There was a marginal main effect of SC surprisal (p = .1). Simple effect anal-

yses showed that RTs were significantly higher for high SC surprisal verbs than for low

SC surprisal verbs in unambiguous sentences (p = .04) but not in ambiguous ones

(p > .4). The interaction was not significant, however (p > .2). The effect of surprisal in

unambiguous sentences may reflect spillover from the complementizer in unambiguous

sentences, which is unpredictable after high SC surprisal verbs.

The main effect of subcategorization entropy was not significant (p > .3). There was a

significant interaction between entropy and surprisal (p = .04). Simple effect analyses,

collapsing across the two levels of Ambiguity, showed that high SC surprisal verbs were

associated with higher RTs when their subcategorization entropy was low (p = .02) but

not when it was high (p > .7). The three-way interaction between surprisal, entropy, and

Ambiguity did not approach significance (p > .5).

Table 2

Statistical analysis of factorial design

Subject Verb Ambiguous Disambiguating

Entropy 0.6 0.81 �0.95 1.03

Surprisal 0.87 1.61† 1.58† 2.17*

Ambiguity �0.02 �0.55 5.71*** 3.84***

Entropy 9 Surprisal �0.07 �1.22 �1.94* �0.32

Entropy 9 Ambiguity �1.73† �1.07 �1.00 1.00

Surprisal 9 Ambiguity �1.01 �0.02 �1.11 1.87†
Entropy 9 Ambiguity 9 Surprisal 0.2 �0.8 �0.18 �0.14

Notes. The table shows t statistics from a linear mixed-effects regression model. Entropy refers to high

versus low subcategorization frame entropy (i.e., single-step entropy at the verb); Surprisal refers to high ver-

sus low sentential complement surprisal; and Ambiguity is positive for ambiguous sentences and negative for

unambiguous ones. Legend: ***p < .001, *p < .05, †p < .1.
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4.3.2.4. Disambiguating region: This region was read faster in unambiguous sentences

(p < .001). There was a main effect of SC surprisal (p = .03), as well as a marginally

significant interaction between SC surprisal and ambiguity in this region (p = .06), such

that the simple effect of SC surprisal in unambiguous sentences was not significant

(p > .2), but the simple effect in ambiguous sentences was (p = .007). This is the signa-

ture expectation violation effect observed in previous studies (Garnsey et al., 1997;

Trueswell et al., 1993). The main effect of entropy did not reach significance, and neither

did any of the interactions between entropy and other predictors (ps > .3).

4.4. Discussion

The experiment replicated the SC surprisal effect found in previous studies (Garnsey

et al., 1997; Trueswell et al., 1993): In ambiguous sentences, disambiguation in favor of

an SC was more costly when the surprisal of an SC given the verb was high. Subcatego-

rization entropy did not significantly affect RTs at the verb (or in any other region of the

sentence). The absence of an entropy effect does not support either the competition or the

entropy reduction hypotheses.

One important caveat to this conclusion is that our experiment was based on the verbs’

subcategorization entropy, that is, on readers’ uncertainty about the syntactic category of

the verb’s complement. As indicated in the introduction, this quantity does not take into

account the reader’s full uncertainty about the parse. We now examine the consequences

of replacing subcategorization entropy with full entropy about the syntactic structure of

the sentence.

5. Full entropy analysis

In order to assess the effect of the full uncertainty that a comprehender might experi-

ence during incremental sentence understanding, we derived full entropy estimates from a

probabilistic context-free grammar (PCFG) based on the Penn Treebank. With the excep-

tion of the main verbs, whose lexically specific subcategorization probabilities are of

direct relevance to this study, the grammar was unlexicalized: Its rules only made refer-

ence to parts of speech (syntactic categories) rather than individual lexical items. In con-

trast with the substantial transformations applied to the grammar in some state-of-the-art

parsers (Johnson, 1998; Petrov & Klein, 2007), the grammar we used was very close to

an untransformed “vanilla” PCFG. We made this decision to keep the grammar reason-

ably small, since computation of full entropy estimates becomes difficult with larger

grammars (Roark et al., 2009). Appendix B provides more detail about the grammar.

The full entropy estimates derived from the grammar take into account not only the

uncertainty about the next syntactic node but also the uncertainty about the internal struc-

ture of that node (cf. Fig. 3). We use these full entropy estimates to test the competition

and entropy reduction hypotheses, while simultaneously controlling for surprisal (esti-

mated from the same PCFG). Fig. 5 summarizes the full entropy, entropy reduction, and
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surprisal estimates derived from the PCFG, averaged within each of the four conditions

of the factorial design (high vs. low SC surprisal 9 high vs. low subcategorization

entropy). We go through each region separately. For each region, we begin by describing

the relation between the factorial design and the PCFG-derived estimates. We then

describe the predictions of the competition and entropy reduction hypotheses for RTs,

based on the PCFG-derived estimates (see Table 3 for an overview). Finally, we analyze

the effects of entropy and entropy reduction on RTs. Since entropy and entropy reduction

tend to be highly correlated, we assess the effect of each of the variables in a separate

model. Instead of the factorial SC surprisal and subcategorization entropy predictors, the

models included continuous PCFG-based surprisal and one of the full entropy measures,

as well as an interaction term. When not mentioned otherwise, all analyses contained the

full random effect structure. All predictors were averaged across all of the words in a

region, then centered and standardized before being entered into the model. Unless men-

tioned otherwise, collinearity did not play a role (correlations between predictors rs < .5).

5.1. Subject region

The same eight main subjects were used in all four conditions of the factorial design

(see Fig. 5); the grammar-based predictors therefore did not differ across conditions in
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Fig. 5. Word-by-word entropy, entropy reduction, and surprisal predictions derived from the probabilistic

context-free grammar based on the Penn Treebank. Predictions are averaged within each of the four condi-

tions of the factorial design. Following Hale (2006), we define entropy reduction at a word to be 0 when

entropy after the word is greater than entropy before it.
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this region. The words that made up those eight subjects varied in their parts of speech:

two people is a numeral followed by a plural noun (CD NNS in Penn Treebank notation),

whereas the man is a determiner followed by a singular noun (DT NN). This resulted in

some limited variability within each condition in the grammar-derived predictors for this

region (Fig. 7). There was a strong correlation between entropy and entropy reduction

(r = �.91).

5.1.1. Results
Linear mixed-effects models did not yield any significant effects in this region, in

either the entropy or the entropy reduction analysis (all ps > .3).

5.2. Verb region

Full entropy in this region is somewhat higher for verbs with high subcategorization

entropy (Fig. 5). However, this difference is dwarfed by the substantial correlation

between SC surprisal and full entropy: Verbs that are more likely to be followed by an

SC (i.e., verbs with lower SC surprisal) have higher full entropy. This correlation, which

may be unexpected at first blush, stems from the fact that full entropy at a given point in

the derivation is calculated as the sum of single-step entropy and the expected full

entropy of the structures that can be derived at that point (see Appendix B for details).

Table 3

Predictions made by uncertainty-based theories (based on full entropy)

Verb Ambiguous Disambiguating

Competition Lower SC surprisal, Higher

subcat entropy

? Higher full entropy

? Longer RTs✗

Longer RTs in unambiguous than

in ambiguous sentences✗

Entropy

reduction

Lower SC surprisal, Higher

subcat entropy

? Higher full entropy

? Lower full entropy

reduction

? Shorter RTs✓

Shorter RTs in unambiguous

than in ambiguous sentences✓

Longer RTs in

unambiguous than

ambiguous

sentences ⊘

Within ambiguous sentences only:
Competition Lower SC surprisal, Higher

subcat entropy ? Longer RTs ⊘
Entropy reduction Lower SC surprisal, Higher

subcat entropy ? Longer RTs ⊘

Notes. Predictions made by the competition and entropy reduction hypotheses for the three main regions

of the materials (the hypotheses do not make any predictions for the subject region). Predictions are shown

both for the whole data set, focusing on the comparison between ambiguous and unambiguous sentences, and

specifically for ambiguous sentences. Cells are shaded whenever a hypothesis does not predict any RT differ-

ence in a region. Predictions confirmed by the results are marked with ✓; predictions not found confirmed

are marked with ⊘; predictions rejected by the results are marked with ✗.
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SCs have many more potential internal structures than NPs or preposition phrases, and

therefore higher internal entropy; when the probability of an SC is high, full entropy is

dominated by the internal entropy of an SC (Fig. 6).

Entropy and entropy reduction are highly inversely correlated in the verb region

(r = �.98), since entropy before the verb is similar across items (Fig. 7). As is the case

in general, the competition hypothesis predicts a positive correlation between RTs

entropy, and the entropy reduction hypothesis predicts a positive correlation with entropy

reduction.

5.2.1. Results
The entropy reduction analysis found a positive effect of entropy reduction on RTs at

the verb (b = 0.014, p = .047). The entropy analysis found a marginal negative effect of

entropy (b = �0.012, p = .08). Neither analysis revealed any other effects (ps > .5).

The effect of entropy reduction is in the direction predicted by the entropy reduction

hypothesis; the direction of the entropy effect is opposite to that predicted by the compe-

tition hypothesis. To the extent that RTs on the verb region support either of the two

hypotheses, they thus argue in favor of the entropy reduction hypothesis.

RTs on the verb region also shed light on the unexpected numerical difference in RTs

between verbs with low and high SC surprisal verbs in the factorial (i.e., single-step

entropy) analysis. SC surprisal is one of the major factors that determine full entropy at

the verb. This suggests that the apparent effect of SC surprisal in the factorial analysis

may be an artifact of its correlation with entropy reduction.

5.3. Ambiguous region

The high internal entropy of SCs continues to play a major role in the full entropy pro-

file of the following regions as well. In unambiguous sentences, the sequence that + de-

terminer increases the probability of an SC to 1, causing full entropy to rise sharply. In

(a) (b)

Fig. 6. Illustration of the effect of the internal entropy of the verb’s complements on full entropy after the

verb: (a) in a verb with an SC probability of 0.9; (b) in a verb with an SC probability of 0.5. The internal

entropy of an SC is much higher than both verbs’ subcategorization entropy and the internal entropy of an

NP; the most important predictor of full entropy in this case is therefore the probability of an SC (the specific

values of internal entropy and subcategorization probabilities in the figure are for illustration purposes only).

16 T. Linzen, T. Florian Jaeger / Cognitive Science (2015)



ambiguous sentences, on the other hand, some of the probability mass is reserved to the

relatively low-entropy NP complement; this results in overall lower entropy. Counterintu-

itively, then, a strong version of the competition hypothesis, according to which predicted

parses lead to competition prior to the presence of bottom-up evidence for those parses,

would predict higher RTs in unambiguous sentences than in ambiguous sentences in this

region. The entropy reduction hypothesis, on the other hand, predicts higher RTs in

ambiguous than unambiguous sentences: Entropy decreases in ambiguous sentences, lead-

ing to some processing cost, whereas it increases in unambiguous sentences (recall that

an increase in entropy is not predicted under the entropy reduction hypothesis to affect

the processing time).

Within ambiguous sentences, the predictions of the competition hypothesis for the

ambiguous region are qualitatively similar to its predictions at the verb: The more likely

Fig. 7. Variability across items of PCFG-derived variables (entropy, entropy reduction, and surprisal). The

values plotted are the mean of each variable across the region. Following Hale (2006), entropy reduction at a

word is defined to be 0 when entropy after that word is greater than entropy before it.
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the verb is to be followed by an SC, the higher the full entropy and hence the higher the

RTs predicted by the competition hypothesis. The entropy reduction hypothesis predicts

that this region should show the mirror image of the effect predicted at the verb: Verbs

that strongly predict an SC cause a milder entropy reduction at the verb, but a steeper

entropy reduction at the word the, which increases the probability of an NP and partly

counteracts the verb-specific SC bias. At the ambiguous region of ambiguous sentences,

then, both competition and entropy reduction predict the same qualitative effect across

items: Lower SC surprisal should lead to increased RTs.

Within unambiguous sentences, neither theory predicts RT differences associated with

the factorial conditions: Since the sentence has already been disambiguated in favor of

the SC parse, entropy estimates for both this region and the word preceding it (that) do
not depend on the main verb’s subcategorization probabilities. The small differences that

do exist across individual items (Fig. 7) stem from part of speech differences in the “am-

biguous” noun phrase (plural vs. singular noun).

5.3.1. Results
Entropy and entropy reduction were highly correlated in the ambiguous region, though

not quite as highly as in the verb regions (r = �.78). We first conducted the analyses col-

lapsing across ambiguous and unambiguous sentences. Entropy reduction correlated with

increased RTs (b = 0.042, p < .001), and entropy correlated with decreased RTs

(b = �0.043, p < .001). No other effects reached significance in either analysis (ps > .5).

These results are predicted by the entropy reduction hypothesis, and are the opposite

of the predictions of the competition hypothesis. Since entropy effects in the ambiguous

region are highly confounded with Ambiguity (entropy: r = .99; entropy reduction:

r = �.85), however, this result has to be interpreted with caution. For example, it is pos-

sible that the observed effect stems from other differences between the ambiguous and

unambiguous sentences, such as the presence of temporary ambiguity.

To test whether the effect of the entropy measures was solely carried by Ambiguity,

we repeated both analyses over ambiguous sentences only (there was little variability

across items in unambiguous sentences; see Fig. 7). None of the predictors in either the

entropy reduction model or the entropy model had a significant effect on RTs (all

ps > .3). This suggests that the effects found in the first analyses (over ambiguous and

unambiguous sentences) were driven by the difference between ambiguous and unam-

biguous sentences. It leaves open, however, whether the lack of any effects within

ambiguous sentences is due to the reduced variability in entropy and entropy reduction

within ambiguous sentences as compared to between ambiguous and unambiguous

sentences (cf. Fig. 7).

5.4. Disambiguating region

When readers reach the disambiguating region, they have ample evidence that the

high-entropy SC parse is the correct one. This leads to high overall entropy, regardless of

whether the sentence was originally ambiguous or unambiguous and of expectations
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derived from the verb’s subcategorization bias. Consequently, the competition hypothesis

predicts no systematic difference across sentence types at this region.

Conversely, the entropy reduction hypothesis predicts that the disambiguating region

should be read faster in ambiguous compared to unambiguous sentences. This somewhat

counterintuitive prediction deserves some elaboration. When ambiguous sentences are dis-

ambiguated in favor of the SC parse, entropy increases sharply because of the higher

internal entropy of SCs. The degree to which it increases depends on the verb’s subcate-

gorization bias; however, the entropy reduction hypothesis predicts processing difficulty

only for decreases in entropy, and hence never predicts any processing cost at the

disambiguating region of ambiguous sentences. For unambiguous sentences, on the other

hand, readers already know that the complement is an SC. This means that entropy will

go down at the first word of the disambiguating region, because on average additional

words reduce entropy (see also Fig. 5). This reduction in entropy, however mild, entails

some processing cost, compared to no processing cost at all in ambiguous sentences.

Neither hypothesis predicts any difference based on the main verb’s subcategorization

distribution, even within ambiguous sentences: While entropy before the disambiguation

point does differ across items, it always increases at the first word of the disambiguating

region. The entropy reduction hypothesis therefore does not predict any RT difference

across items at this word. The differences in entropy before the disambiguation point do

not affect the predictions of the competition hypothesis either, since this hypothesis does

not take history into account. From the disambiguation point on, all items only have an

SC parse. Consequently, word-by-word entropy and entropy reduction estimates will only

vary with the syntactic categories of the verbal complex in the disambiguating region, for

example, had been invaded (VBD VBN VBN) versus should be reported (MD VB

VBD).

Finally, surprisal predicts that the disambiguating region should be read more slowly

in ambiguous sentences, where it is in fact disambiguating.

5.4.1. Results
Following our analyses of the ambiguous region, we excluded the Ambiguity factor

from the analysis (i.e., collapsed all sentences). Surprisal had a significant effect in both

the entropy analysis (b = 0.06, p = .01) and the entropy reduction analysis (b = 0.05,

p = .03). None of the other predictors was significant (ps > .1).

5.5. Summary of full entropy analyses

A summary of the predictions of the competition and entropy reduction hypotheses

and the results of the full entropy analyses is given in Table 3. We found a significant

effect of entropy reduction on RTs at the verb: Higher entropy reduction at the verb cor-

related with longer RTs. The interpretation of this effect is somewhat complicated by the

fact that we also observed a marginal effect of entropy in the same region. The high cor-

relation between entropy and entropy reduction makes it impossible to distinguish these

two effects via model comparison. However, the direction of the observed pattern is con-
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sistent with the predictions of the entropy reduction hypothesis and inconsistent with the

predictions of the competition hypothesis. Similarly, RTs at the ambiguous region support

the predictions of the entropy reduction hypothesis but are inconsistent with the predic-

tions of the competition hypothesis. RTs on the verb and ambiguous region thus provide

support for the entropy reduction hypothesis over the competition hypothesis, while com-

paring both hypotheses on equal ground (using the same representational assumptions, the

same stimuli, and the same control factors).

It is important to keep in mind that syntactic structure is kept constant only at the

verb; when both Ambiguity conditions are included in the analysis of the ambiguous

region, the regression model collapses across different syntactic structures (much like the

comparison between subject and object relative clauses in Yun et al., 2015). Conse-

quently, the longer RTs in the ambiguous region of ambiguous sentences may reflect an

unrelated factor, such as the fact that the ambiguous region follows a frequent function

word in unambiguous sentences (that), but an infrequent content word in ambiguous sen-

tences (namely, the verb; cf. Clifton & Staub, 2008). The results at the verb therefore

constitute stronger support for the role of uncertainty than the results at the ambiguous

region.

Reading times at the disambiguating region were predicted by neither the competition

nor the entropy reduction hypothesis; the only significant predictor of RTs in this region

was surprisal. This result has to be interpreted with caution, however: Surprisal was

highly correlated with both entropy (r = �.79) and entropy reduction (r = �.71). This

means that surprisal and entropy reduction effects are predicted to operate in the opposite

direction from each other. It is thus possible that the strong effects of surprisal masks any

effect of entropy reduction.

6. General discussion

Building on recent evidence that readers maintain expectations over upcoming syntac-

tic structure, this study has investigated how readers’ parsing performance is affected by

the probability distribution of those expectations, focusing specifically on uncertainty

about upcoming structure. We outlined two hypotheses about the potential role of uncer-

tainty in parsing: the competition hypothesis, according to which higher uncertainty

should result in the activation of multiple structures that compete with each other, thereby

slowing down processing (Elman et al., 2005; McRae et al., 1998); and the entropy

reduction hypothesis, according to which processing is slowed down by any word that re-
duces uncertainty (Hale, 2006).

We assessed uncertainty about the parse in two ways: single-step entropy, which

quantifies uncertainty about the next derivation step, in this case, the category of the

verb’s complement (subcategorization frame); and full entropy, which quantifies uncer-

tainty about the syntactic structure of the whole sentence. Much previous work has

employed single-step or other nonfull estimates of entropy (e.g., Frank, 2013; Roark

et al., 2009; Wu et al., 2010; but see Hale, 2003, 2006). This is potentially problem-
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atic as the entropy reduction hypothesis is formulated in full entropy terms (Hale,

2006).

Indeed, the distinction between single-step and full entropy turned out to be critical for

the current study: Single-step entropy did not affect RTs (aside for an unexpected and

likely spurious interaction with surprisal in the ambiguous region), but full entropy did.

RTs were longer when post-verb full entropy was lower. The direction of the effect is not

compatible with our implementation of the competition hypothesis, according to which

higher entropy should lead to increased competition and slower processing. It is, however,

consistent with the entropy reduction hypothesis: Entropy before the verb was always

higher than entropy after it; if post-verb (full) entropy is high, then, the verb did not

reduce entropy by much, and thus is (correctly) predicted to be relatively easy to process.

The entropy reduction hypothesis also correctly predicts that the ambiguous region of

unambiguous sentences should be read faster, compared to ambiguous sentences.

The only prediction of the entropy reduction hypothesis that was not confirmed applies

to the disambiguating region. Here, the entropy reduction hypothesis predicts that

ambiguous sentences should be read faster than unambiguous ones. The opposite was

observed. As outlined above, however, this does not necessarily provide a strong argu-

ment against the entropy reduction hypothesis: In the disambiguating region, surprisal is

expected to have the opposite effect from entropy reduction. Given the strong surprisal

effects at the disambiguating region, all that can be concluded from this result is that (in

this case) surprisal may have a stronger effect on processing difficulty than entropy

reduction. Indeed, while both surprisal and entropy reduction had statistically significant

effects on RTs—at the disambiguating region and at the verb, respectively—the size of

the surprisal effect was larger than the size of the entropy reduction effect (b = 0.06 vs.

b = 0.014).

In summary, it seems that (at least) both surprisal and the entropy reduction hypothesis

are required to account for our results, whereas no support for the competition hypothesis

(as formulated here) was observed.

What is the lookahead distance n that humans use in sentence processing? The current

study has evaluated the two ends of the spectrum: n = 1 (single-step entropy) and n = ∞
(full entropy). Other values of n are also possible (indeed, likely); our finding that RTs

can be predicted by full but not single-step entropy further supports the conclusion that

human parsing during reading involves lookahead of at least several derivation steps. This

conclusion is in line with the conclusions of Frank (2013), who experimented with looka-

head distances of 1 to 4 steps and found that increasing the amount of lookahead

increased the extent to which entropy reduction predicted RTs.7

Changing the lookahead distance may qualitatively change the predictions made by

the competition and entropy reduction hypotheses. Consider, for example, the predic-

tions of the competition hypothesis (as implemented here) for the ambiguous region. At

first blush, one might expect that ambiguity will lead to more competition because of

the uncertainty about the category of the complement (cf. Green & Mitchell, 2006;

Levy, 2008, p. 1152). However, as we have outlined above, there are actually two com-

ponents that combine to determine uncertainty (competition) at this point in the sen-
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tence: the uncertainty about the category of the complement (e.g., whether it is an SC)

and the uncertainty about the internal structure of the complement. Under the infinite

lookahead assumption, the latter turns out to dominate the former. The competition

hypothesis therefore predicts that the disambiguating region will be processed more

slowly in unambiguous sentences than in ambiguous ones—contrary to our findings

(which replicate Kennison, 2001; Pickering & Traxler, 1998). However, since much of

the large entropy associated with SCs comes from their internal structure, shorter looka-

head distances would decrease the relative contribution of the internal structure of SCs

to the overall uncertainty experienced in the ambiguous region, bringing the predictions

of the competition hypothesis in line with the empirical findings. Determining the

appropriate lookahead distance therefore constitutes an interesting question for future

computational studies.

Entropy estimates and the definition of what constitutes a single derivation step may

also depend on the strategy employed by the parser and on the precise representation of

the grammar. For example, a parser may choose to defer the prediction of an NP or SC

category until there is some information supporting either of these categories (in a top–
down parser, this strategy could be implemented by applying a right-binarization trans-

form, which underspecifies the category of the complement; Roark & Johnson, 1999).

Such a parsing strategy may predict no uncertainty at all at the verb. Furthermore, the

grammar representation we employed was based on the Penn Treebank (Marcus et al.,

1993), with minimal modifications (see Appendix B). The Penn Treebank has a small

nonterminal set (around 20 nonterminals). Larger nonterminal sets, created by splitting

existing symbols into finer-grained categories (e.g., by annotating a node in the tree with

the tags of its siblings and parents), have been shown to provide a more realistic proba-

bilistic model of natural language syntax (Johnson, 1998; Klein & Manning, 2003; Petrov

& Klein, 2007; Roark, 2001). Entropy estimates and lookahead distance based on nar-

rower categories are likely to differ significantly from those based on broad categories:

Single-step prediction of a narrow category can approximate several steps of prediction

of broader categories. More generally, grammatical formalisms that allow for some

degree of context-sensitivity (e.g., Kallmeyer, 2010) have been argued to be more ade-

quate models of human language syntax. In future work, it is worth exploring how these

grammatical representational assumptions affect entropy estimates in general and the dis-

tinction between single-step and full entropy in particular.

7. Conclusion

This study used syntactic expectations induced by individual lexical items to examine

the role of uncertainty over expectations in parsing. The results lend some support to the

entropy reduction hypothesis (Hale, 2006). The design of the current study addressed dif-

ferences between previous works that complicated an evaluation of the entropy reduction

and competing hypotheses (cf. Levy & Gibson, 2013). However, the entropy reduction

hypothesis failed to predict RTs where it was in conflict with the surprisal hypothesis
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(Hale, 2001; Levy, 2008). This suggests that predictability (surprisal) and uncertainty

both play a role in explaining processing difficulty in sentence processing. Modeling of

the RT results further suggests that the extent to which uncertainty predicted processing

difficulty depended on the depth of syntactic lookahead that readers were assumed to per-

form: Uncertainty was not a significant predictor of RTs when only the syntactic category

of the verb’s complement was considered, and became significant only when the internal

complexity of the complement was taken into account.
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Notes

1. If the subcategorization distribution has only two potential outcomes, SC and

another frame (e.g., a direct object), then the surprisal of an SC, given by

�log2 pSC, is deterministically related to the entropy of the distribution, given by

�(pSC log2 pSC + (1 � pSC) log2 (1 � pSC)).
2. We only considered active frames; after the verb has been read, passive frames such

as was discovered by are no longer compatible with the sentence. Additionally, Gahl

and colleagues distinguish frames that include participles (Lola looked up from her
book for the intransitive frame) from frames that do not (we watched attentively); we
ignored this distinction for the purposes of calculating subcategorization frame

entropy.

3. This meant that sentence subjects were repeated across items (four times each).

This choice was made in order to avoid more informative subjects. It is, however,

theoretically possible that participants implicitly learned over the course of the

experiment that these eight subjects were always predictive of an SC (Fine, Jaeger,

Farmer, & Qian, 2013). We investigated whether the effects of surprisal and

entropy change over the course of the experiment. We added list position to the

region-by-region linear mixed-effects models. There were robust main effects of list

position, such that participants became faster overall in later trials across regions

(ps < .001). Crucially, however, the order effect did not interact with SC surprisal

(all ps > .1). We conclude that there is no evidence that participants adapted their

expectations over the course of the experiment.

4. Most of the verbs were ambiguous between past tense and passive participle inter-

pretations. In principle, this allows a reduced relative continuation; however, this
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continuation is very rare (<1%, cf. Fine et al., 2013), and unavailable for most of

the verbs (e.g., the men discovered the island had been invaded cannot be inter-

preted as having the same structure as the men sent the letter were arrested).
5. Due to model convergence issues, we had to exclude the random by-subject slopes for

some of the interactions. Specifically, we excluded the slope for the three-way interac-

tion in all four regions. For the main subject and disambiguating region, we addition-

ally excluded the by-subject slope for the SC-surprisal 9 Ambiguity interaction.

6. Since the same set of eight NP subjects was used repeatedly in each of the four

conditions, the NP subject can be seen as a random effect drawn from a population,

and should arguably be modeled as such. We used forward model selection to test

whether this random effect was necessary; for each region, we compared a model

that included random intercepts and slopes for items and participants only (i.e., the

models reported in the text) to a model that additionally included a random inter-

cept and slopes for each predictor in our 2 9 2 9 2 design. In all three regions

(verb, ambiguous and disambiguating), adding this random effect did not improve

the likelihood of the model significantly (all ps > .4).

7. The lookahead distance in Frank (2013) is not directly comparable to ours. Frank

calculated entropy based on word predictions derived from a connectionist network;

a lookahead of n = 4 in that model corresponds to predicting the next four words.

Conversely, our model predicts PCFG rewrite rules, not words; multiple PCFG

derivation steps may be required to predict each word (and vice versa), such that

four words can correspond to three, five or eight PCFG rewrite rules.
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Appendix A: List of materials

A.1. Low subcategorization entropy, low SC surprisal

The men discovered (that) the island had been invaded by the enemy.

The women revealed (that) the secret had been exposed by the officials.

The man noticed (that) the mistake had not happened due to negligence.

The woman assumed (that) the blame might have belonged to the driver.

They all indicated (that) the problem might not bother the entire team.

Two people found (that) the equipment should be reported stolen right away.

Some people sensed (that) the conflict should be resolved quickly and peacefully.

Many people guaranteed (that) the loan would be paid off on time.

A.2. Low subcategorization entropy, high SC surprisal

The woman determined (that) the estimate had been inflated by the accountant.

Two people heard (that) the album had been criticized in the magazine.

Some people understood (that) the message had not meant much to foreigners.

They all read (that) the newspaper might be going out of business.

The women worried (that) the parents might have become quite restless recently.

Many people advocated (that) the truth should be made public without delay.

The man taught (that) the children should be sheltered from all harm.

The men projected (that) the film would not gross enough in cinemas.

A.3. High subcategorization entropy, low SC surprisal

They all claimed (that) the luggage had been stolen from the hotel.

Some people regretted (that) the decision had been reached without any discussion.

The men remembered (that) the appointment had not changed since last week.

The women warned (that) the drivers might have drunk too much vodka.

Many people feared (that) the future might not hold hope for them.

The man proposed (that) the idea should be abandoned for financial reasons.

Two people suggested (that) the scene should be filmed right before sunset.

The woman announced (that) the wedding would be postponed until late August.

A.4. High subcategorization entropy, high SC surprisal

The men forgot (that) the details had been worked out in advance.

The man observed (that) the patient had been sent home too early.

The woman recalled (that) the speech had not gone over very well.

The women answered (that) the questions might be discussed during the meeting.

Some people added (that) the numbers might have decreased since last year.
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Two people wrote (that) the interview should be conducted over the phone.

Many people advised (that) the president should be considering further budget cuts.

The men begged (that) the judge would not treat the defendant harshly.

Appendix B: Grammar definition and estimation

B.1. Definitions

A probabilistic context-free grammar (PCFG) consists of a set of nonterminals V,
which includes intermediate categories such as VP (verb phrase) and N (noun); a set of

terminal symbols T, which represent specific words (e.g., dog); a special start symbol S; a
set of rule productions of the form X ? a, where X is a nonterminal and a is a

sequence of terminals or nonterminals (e.g., VP ? V NP); and a function q that assigns

a probability to each production rule. We define R(X) to be the set of rules rewriting

nonterminal X.
A PCFG is considered lexicalized if some of its nonterminals include lexical annota-

tions that allow the identity of a lexical head to affect the probability of modifiers that

co-occur with it. For example, a lexicalized grammar can have both q(VPbreak ? Vbreak

NP) = 0.3 and q(VPhit ? Vhit NP) = 0.7.

We first define the entropy of the next derivation step (single-step entropy). If ai 2 V
is a nonterminal (e.g., VP), the single-step entropy h(ai) corresponding to ai is given by

the following:

hðaiÞ ¼ �
X

r2RðaiÞ
qðrÞ log2 qðrÞ

The full entropy of a nonterminal is defined recursively, as the sum of two terms: the

single-step entropy of the nonterminal and the expected sum of the full entropy of any

nonterminals that can be derived from the nonterminal. Formally, the full entropy H(ai)
of nonterminal ai is given by (Grenander, 1967):

HðaiÞ ¼ hðaiÞ þ
X

r2RðaiÞ
qðrÞ

Xkr

j¼1

Hðar;jÞ;

where ar;1; . . .; ar;kr are the nonterminals on the right-hand side of rule r. The closed form

formula for the recursion is as follows:

H ¼ ðI � AÞ�1h;

where H = (H1, . . ., H|V|) is the vector of all full entropy values, h = (h1, . . ., h|V|) is

the vector of all single-step entropy values, I is a |V| 9 |V| identity matrix, and A is a

|V| 9 |V| matrix, in which the element in row i and column j indicates the expected count

of instances of nonterminal aj resulting from rewriting nonterminal ai.
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B.2. Full entropy estimation

Word-by-word entropy estimates for our materials were derived using the Cornell Con-

ditional Probability Calculator (Chen, Hunter, Yun, & Hale, 2014) from a probabilistic

context-free grammar estimated from the Penn Treebank. Following standard practice, we

removed grammatical role and filler-gap annotations (e.g., NP-SUBJ-2 was replaced by

NP). We reduced the size of the grammar by removing rules that included punctuation,

rules that occurred less than 100 times (out of the total 1,320,490 nonterminal produc-

tions) and rules that had a probability of less than .01. These steps resulted in the removal

of 13%, 14%, and 10% rule production tokens, respectively.

The grammar was unlexicalized, except for verb-specific production rules that captured

the differences in subcategorization probabilities among the 32 verbs in the experiment

(again based on Gahl et al., 2004). Half of the probability mass from all (unlexicalized)

rules deriving VP was divided among the lexicalized rules. The conditional probability of

each rule was proportional to the verb’s frequency. For example, the probability of the

rule VPdiscover ? Vdiscover NP was defined to be:

qðVPdiscover ! Vdiscover NPÞ ¼ 1

2

freqðdiscoverÞPðNPjdiscoverÞP
i
freqðmiÞ

Unlexicalized grammars read off a treebank have been shown to make excessively

strong assumptions of context-freeness, which affects the accuracy of probability esti-

mates derived from such grammars (Johnson, 1998). The adequacy of the grammar is typ-

ically improved either by lexicalizing the grammar (Collins, 1999) or by adding

contextual information to some of the tags; for example, the NP tag may be split into

NP^VP for an NP whose parent is a VP and NP^S for an NP whose parent is an S (John-

son, 1998; Klein & Manning, 2003). At the same time, the number of nonterminals in the

grammar had to be kept to a minimum to enable the use of the closed form full entropy

formula, which requires inverting a matrix that has as many rows as the number of non-

terminals in the grammar. We therefore only split the tags that were most relevant to the

probability estimates derived for the experimental materials. First, the word that is tagged
in the Penn Treebank as a preposition (IN) when it occurs as a subordinating conjunction

(as in the men discovered that. . .). This resulted in SCs being erroneously parsed as

prepositional phrases. We therefore replaced the generic tag IN with IN[that] in those

cases; similarly, for auxiliary verbs we replaced VBD with VBD[had] and VBN with

VBN[been]. Second, the grammar assigned implausibly high probabilities to reduced rela-

tive readings of the materials (where discovered that the island is attached as a modifier

of the men, by analogy with the men discovered by the police). Since the verb in a

reduced relative must be a past participle (VBN), we split the VP category into subcate-

gories based on the VP’s leftmost child, for example, VP_VBD is a VP headed by a

past-tense verb (VBD), such that only a VP_VBN can modify a noun. We likewise split
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SBAR into SBAR[overt] when the SBAR had an overt complementizer and SBAR[none]

when it did not.

The focus of this study is on syntactic surprisal and entropy, that is, on the portion of

those measures that is due to the part of speech of the word rather than its identity (Roark

et al., 2009). To tease out the syntactic component of these measures, then, the input to

the parser consisted of parts of speech, with the exception of the main verb; for example:

(3) The men discovered the island had been
DT NNS discovered DT NN VBD[had] VBN[been]
invaded by the enemy.
VBN IN DT NN

Appendix C: Word-by-word reading times
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Fig. 8. Word-by-word reading times averaged by the conditions of the factorial design. Error bars represent

bootstrapped 95% confidence intervals.
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