Rethinking Innateness: A
Connectionist Perspective on

Development

Jeffrey L. EIman, Elizabeth A. Bates,
Mark H. Johnson, Annette Karmiloff-Smith,
Domenico Parisi and Kim Plunkett

From The MIT Press

The MIT Press M ITCog Net

First MIT Press paperback edition, 1998
© 1996 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by
any electronic or mechanical means (including photocopying, recording, or
information storage and retrieval) without permission in writing from the
publisher.

Printed and bound in the United States of America.
Library of Congress Cataloging-in-Publication Data

Rethinking innateness: a connectionist perspective on development /

Jeffrey L. Elman. . . [et al.]

p- cm.—(Neural network modeling and connectionism : X)

“ A Bradford book.”

Includes bibliographical references and index.

ISBN 0-262-05052-8 (hb : alk. paper), 0-262-55030-X (pb)

ISBN-13 978-0-262-05052-4 (hb : alk. paper)—

ISBN-13 978-0-262-55030-7 (pb)

1. Nature and nurture. 2. Connectionism. 3. Nativism
(Psychology) L Elman, Jeffrey L. II. Series: Neural network modeling
and connectionism : 10.

BF341.R35 1996
155.7—dc20 96-15522
CIP

1098

cusrrez Why connectionism?

A conversation

B: A little bird told me you've writing a book about connectionism and
development. I didn't believe it. You must be losing it! What on earth is
a nice girl like you doing in such bad company? You must know that
connectionism is nothing more than associationism in high tech cloth-
ing. I thought you believed in constructivism, interactionism, epigene-
sis and all that murky stuff.

A: Oh, I'm still a believer! But the connectionist framework allows me to
come up with a much more precise notion of what all that stuff really
means. It can inspire a truly interactive theory about developmental
change. Associationist models rested on assumptions of linearity. The
multi-layer nets connectionists use are nonlinear dynamical systems,
and nonlinear systems can learn relationships of considerable complex-
ity. They can produce surprising, nonlinear forms of change. They’ve
made me completely rethink the notion of stages.

B: I don’t believe my ears! Connectionist nets are simply reactive, they
just respond to statistical regularities in the environment.

A: No, that may have been true of the earliest models, but the more com-
plex ones develop internal representations that go well beyond surface
regularities to capture abstract structural relationships.

B: Yeah, but how will you account for the rule-governed behavior of intel-
ligent humans. Networks may be okay at the implementation level, but
they can’t represent rules of grammar and things like that, and that’s
what human intelligence is all about.

48

A:

CHAPTER 2

Another misconception! The transformations that occur during pro-
cessing in networks do the same work as rules in classical systems. But
what'’s interesting is that these rules gnd representations take a radi-
cally different form from the explicit symbols and algorithms of serial
digital computers. The representations and rules embodied in connec-
tionist nets are implicit and highly distributed. They capture our intu-
itions about the status of rules in infants’ and young children’s
knowledge. Part of the challenge of modern research on neural net-
works is to understand exactly what a net has learned after it has
reached some criterion of performance.

: From the sublime to the ridiculous! The next thing you'll say is that

connectionism is compatible with nativist ideas too! Come on, it's tab-
ula rasa personified! Anyway, though they claim to build nothing in,
the connectionists sneak in the solutions by fixing the weights and con-
nections or laying out the solution in the way they represent the input.

: Wrong again! First there are lots of different kinds of connectionism

and we're trying to make the case for a biologically- and developmen-
tally-inspired connectionism. Second, connectionism’s not incompati-
ble with innately specified predispositions—just depends how you
define the predispositions. You're gonna have to read the book! You're
right that many early simulations assumed something like a tabula
rasaq in the first stages of learning (e.g., a random “seeding” of weights
among fully-connected units before learning begins). This has proven
to be a useful simplifying assumption, in order to learn something
about the amount and type of structure that does have to be assumed
for a given type of learning to go through. But there is no logical
incompatibility between connectionism and nativism. The problem
with current nativist theories is that they offer no serious account of
what it might mean in biological terms for something to be innate. In
neural networks, it is possible to actually explore various avenues for
building in innate predispositions, including minor biases that have
major structural consequences across a range of environmental condi-
tions. As for sneaking in the solutions, we do a lot less of that than
classical systems. Don't forget that connectionist networks are self-
organizing systems that learn how to solve a problem. As the art is cur-
rently practiced, the only one who fiddles with the weights is the sys-

Why connectionism? 49

tem itself in the process of learning. In fact in a simulation of any
interesting level of complexity, it would be virtually impossibie to
reach a solution by "hand-tweaking” of the weights. As for the issue of
“sneaking the solution into the input,” don't forget that there are sev-
eral examples of simulations in which the Experimenter did indeed try
to make the input as explicit as possible—and yet the system stub-
bornly found a different way to solve the problem! Connectionist sys-
tems have a mind of their own and very often surprise their modelers.

: Jesus, I need a drink! A mind of their own! What next?

: Okay, I set that one up, but seriously, the way networks learn is sur-
prisingly simple, yet the learning yields surprisingly complex results.
We think that complexity is an emergent property of simple interacting
systems—you see this throughout the physical and biological world.

: So the next thing I'm gonna hear is that connectionism has some bio-
logical plausibility! Lip service to neurons! Spare us, please!

: Well, connectionists work at many different levels befween brain and
behavior. In current simulations of higher cognitive processes, you're
right, the architecture is “brain-like” only in a very indirect sense. The
typical 100-neuron connectionist toy is “brain-like” only in compari-
son with the serial digital computer (and don’t forget, old boy, that
sertal digital computers are wildly unlike nervous systems of any
known kind). There are two real questions: First, is there anything of
interest that can be learned from simulations in simplified systems, and
second, can connectionists “add in” constraints from real neural sys-
tems in a series of systematic steps, approaching something like a real-
istic theory of mind and brain? You know, there are many researchers
in the connectionist movement who are trying to bring these systems
closer to neural reality. Some are exploring analogues to synaptogene-
sis and synaptic pruning in neural nets. Others are looking into the
computational analogues of neural transmitters within a fixed network
structure. The current hope is that work at all these different levels will
prove to be compatible, and that a unified theory of the mind and brain
will someday emerge. Don't tell me we are a long way off, that’s obvi-
ous. But most connectionist researchers are really committed to ulti-

50 CHAPTER 2

mate neural plausibility, which is more than you can say for most other
approaches. Anyway, what's really exciting is that it has launched a
new spirit of interdisciplinary research in cognitive neuroscience, and
why I got excited is that it has really crucial implications for getting a
developmental perspective into connectionism and a connectionist per-
spective into developmental theorizing.

B: Well, you've got a lot of arguing to do to convince me about that!

A: As I said just now, you'll have to read the book! So where's that gin and
tonic?

Nuts and bolts (or nodes and weights)

The first thing to be said about connectionist networks is that most
are really quite simple, but their behaviors are not. That is part of
what makes them so fascinating. We will describe some of these
behaviors in detail in this chapter, particularly those which are rele-
vant to the developmental issues we are concerned with in this
book {(e.g., innateness, modularity, domain specificity, etc.). Before
doing that, however, we need to have some working knowledge of
the nuts and bolts of the framework. We therefore begin with an
overview of basic concepts which characterize most connectionist
models.

Basic concepts

There is considerable diversity among connectionist models, but all
models are built up of the same basic components: Simple process-
ing elements and weighted connections between those elements.
The processing elements are usually called nodes or units, and are
likened to simple artificial neurons. As is true of neurons, they col-
lect input from a variety of sources. Some nodes receive and send
input only to other nodes. Other nodes act like sensory receptors
and receive input from the world. And still other nodes may act as
effectors, and send activation outward. (Some nodes may even do

Why connectionism? 51

all three things.) Figure 2.1 illustrates several architectures. Here,
we use the convention of a filled circle to represent a node, lines
between nodes to indicate communication channels (conceptually,
roughly similar to dendrites and axons), and arrows to indicate the
direction of information flow.

; - o

)

FIGURE 2.1 Varicus types of connectionist networks. (a) A fully
recurrent network; (b) a three-layer feedforward network; {c) a complex
network consisting of several modules. Arrows indicate direction of
flow of excitation/inhibition.

We can expand this basic picture in a bit more detail by consid-
ering the dynamics of processing. A node receives input from other
nodes to which it is connected. In some networks these connections
are unidirectional (as in Figure 2.1b). In other cases, connections
may be bidirectional (Figure 2.1a). The connections between nodes
have weights. 1t is in the weights that knowledge is progressively
built up in a network. These are usually real-valued numbers, e.g.,
1.234, -4.284 . These weights serve to multiply the output of the send-
ing nodes. Thus if node # has an output of 0.5 and has a connection
to node b with a weight of -2.0, then node b will receive a signal of
-1.0 {0.5x-2.0); in this case the signal would be considered inhibi-
tory rather than excitatory.

A given node may receive input from a variety of sources. This
input is often simply added up to determine the net input to the
node (although other types of connections have been proposed in

52 CHAPTER 2

which products of inputs are taken, as in sigma-pi units). It is useful
to develop a formalism for describing the manner in which the
activity of a node is computed from other sources of activity in the
network. Let us suppose that the single input coming from some
node j is the product of that node j’s activation (we‘ll call this num-
ber ¢;) and the weight on the connection between node j and node :
(we’ll designate this weightw,, where the first subscript denotes the
receiving node and the second subscript denotes the sending
node—a convention adopted from matrix notation in linear alge-
bra). Then the single input from node j is the product wya;. The
total input over all incoming lines is just the sum of all of those
products (we’ll use the symbol ¥; to indicate summation from all
node sources j). More compactly, we can write the net input to node
ias

net; = Y wya, (EQ 2.1)
j

This is the total input received by a node. But like neurons, the
response of the node is not necessarily the same as its input. As is
true of neurons, some inputs may be insufficient to cause the node
to “do” very much. What a node “does” is captured by the node’s
activation value. So we want to know what the response function of a
node is: For any given input, what is the corresponding output {(or
activation)?

In the simplest case, if the node is a linear unit, the output acti-
vation is in fact just the same as its net input. Or the node may have
a slightly more complex output function, emitting a 1.0 just in case
the net input exceeds some threshold, and outputting a 0.0 other-
wise. The Perceptron and the McCulloch-Pitts neuron both had this
characteristic; they are examples of linear threshold units. (Note that,
despite their name, they have an important nonlinearity in their
response.)

A more useful response function is the logistic function

a, = —— (EQ2.2)

Why connectionism? 53

(where g, refers to the activation (output) of node i, net; is the net
input to node i, and e is the exponential). We have graphed the acti-
vation of a node with this activation function in Figure 2.2.

0.8 |

0.6

Output {Activation)

0.2 p

1 N L
-5 0 8 10

Input

FIGURE 2.2 The sigmoid activation function often used for units in
neural networks. Outputs (along the ordinate) are shown for a range
of possible inputs (abscissa). Units with this sort of activation function
exhibit an all or nothing response given very positive or very negative
inputs; but they are very sensitive to small differences within a narrow
range around 0. With an absence of input, the nodes output 0.5,
which is in the middle of their response range.

This figure tells us what the output is (the vertical axis) for any
given net input (the horizontal axis). For some ranges of inputs
(large positive or negative ranges along the horizontal) these units
exhibit an all or none response (i.e., they output a 0.0 or 1.0). This
sort of response lets the units act in a categorical, rule-like manner.
For other ranges of inputs, however, (close to 0.5) the nodes are
very sensitive and have a more graded response. In such cases, the
nodes are able to make subtle distinctions and even categorize
along dimensions which may be continuous in nature. The nonlin-
ear response of such units lies at the heart of much of the behavior
which makes such networks interesting.

54 CHAPTER 2

Note that in the absence of input (0.0 on the horizontal axis), the
node’s output is 0.5, which is right in the middle of its possible
response range. Often this is a reasonable response, because it
means that with no input, a node’s response is equivocal. But some-
times times it is useful for nodes to have a default value other than
0.5, so that in the absence of input, they might be either “off” (out-
put 0.0), “on” (output 1.0), or perhaps take some other intermediate
value. This notion of different defaults is similar to the idea of vary-
ing thresholds, and can be accomplished by giving each node one
additional input from a pseudo-node, called the bias node, which is
always on. The weight on the connection from the bias node may be
different for different units. Since each unit will always receive
input from the bias unit, this provides a kind of threshold or default
setting, in much the same way as humans exhibit default reactions
to stimuli in the absence of additional data.

It is not difficult to see how simple networks of this kind might
compute logical functions. For example, logical AND could be
implemented by a network with two input units and a single output
unit. The output unit would be “on” (have a value close to 1.0)
when both inputs were 1.0; otherwise it would be off (close to 0.0). If
we have a large negative weight from the bias unit to the output, it
will by default (in the absence of external input) be off. The weights
from the input nodes to output can then be made sufficiently large
that if both inputs are present, the net input is great enough to turn
the output on; but neither input by itself would be large enough to
overcome the negative bias.

As this example makes apparent, part of what a network knows
lies in its architecture. A network with the wrong or inappropriate
input channels, with inputs which don’t connect to the output, or
with the wrong number of output units, etc., cannot do the desired
job. Another part of a network’s knowledge lies in the weights
which are assigned to the connections. As the AND example shows,
the weights are what allow the correct input/output relation to be
achieved.

How do we know what architectures to choose, and what
weights? In much of the connectionist work done in the early
1980’s, and in an approach still pursued by many researchers today,

Why connectionism? 55

networks are designed by hand and reflect theoretical claims on the
part of the modeler. For example, in the word perception model of
McClelland and Rumelhart (1981; Rumelhart & McClelland, 1982),
there are separate layers of nodes which are dedicated to processing
information at the word, letter, and orthographic feature levels (see
Figure 2.3). The connections between nodes within and across lay-
ers reflect the non-arbitrary relationships between the concepts rep-
resented by the nodes. Thus, the node for the word “trap” receives

oot

positively weighted input from the letter nodes “t”, “r”, “a”, and

p”; and it is inhibited by other word nodes (since only one word
may be reasonably present at once).

word leve!

letter level

feature level

visual input

(a) (b)

FIGURE 2.3 (a) Global view of word perception model of McClelland &
Rumelhart. (b) Detailed fragment of the model. Connections ending in
arrows are excitatory; connectionist ending in filled circles are
inhibitory. (Adapted from McClelland & Rumelhart (1981).

56 CHAPTER 2

This model instantiates a theory which McClelland and Rumel-
hart developed in an attempt to account for a range of experimental
data. Even though the model was hand-crafted and relatively sim-
ple, it exhibits a number of behaviors which are not obvious simply
from inspecting the model. As is often the case with these systems,
the nonlinearities and high degree of interaction give rise to phe-
nomena that were not themselves deliberately programmed in. (It
would be wrong to say they were not programmed in, since they
obviously do result from the specifics of the way the model has
been designed. What is relevant here is just that they do not result
from the modeler’s intentional efforts to produce the behaviors.)
Indeed, some of these behaviors are quite unexpected and make
predictions about human behavior which can then be tested experi-
mentally.

Learning

There are other significant aspects of models such as the
McClelland and Rumelhart model about which we shall have more
to say when we talk about representation. For now we note that the
hand-wiring which is required may be problematic. As the degrees
of freedom (these include, among other things, the number of nodes
and connections) grow, so too does the number of ways of con-
structing networks. How do we know which is the best way? Or,
equivalently, how do we know we have the right theory? There may
be cases where we feel we have a good idea about the inputs and
outputs which are relevant to some behavior—these can be
observed directly. But what we want is to use the model to help
develop a theory about the internal processing which gives rise to
this behavior, rather than just implementing a theory we already
hold. The question then becomes, is there some way by which net-
works can configure themselves so that they have the appropriate
connections for a task? Can we use the networks for theory devel-
opment?

Why connectionism? 57

Hebbian learning

One of the earliest ideas about how networks might learn came
from Donald Hebb. Speaking of real nervous systems, Hebb sug-
gested that

When an axion of cell A is near enough to excite a cell B and repeat-
edly or persistently takes part in firing it, some growth process or met-
abolic change takes place in one or both cells such that A’s efficiency,
as one of the cells firing B, is increased. (Hebb 1949; p. 62)

There are various ways of capturing this notion mathematically, but
Hebb is essentially proposing here that learning is driven by corre-
lated activity. Thus, in an artificial system in which changes in con-
nection strength plays the role of changes in synaptic potentiation,
the rule for weight change might be

Awij = na’.aj (EQ 23)

(where Aw,; represents the change in the weight on the connection
from sending node j to receiving node i, n is a small constant of
proportionality (the learning rate), and a; and a; are the activations
of the two nodes). The Hebb rule has been studied extensively and
is widely used in modeling today. It has at least two attractive vir-
tues: there are known biological mechanisms which might plausibly
implement it (e.g., Long Term Potentiation, Bliss & Lemo, 1973);
and it provides a reasonable answer to the question, “Where does
the teacher information for the learning process come from?” It is
easy to believe that there is a great deal of useful information which
is implicit in correlated activity, and the system need not know any-
thing in advance. It simply is looking for patterns.

However, there is a serious limitation to Hebbian learning,
which is that all it can learn is pair-wise correlations. There are
cases where it is necessary to learn to associate patterns with
desired behaviors even when the patterns are not pair-wise corre-
lated, or may exhibit higher-order correlations. The Hebb rule can-
not learn to form such associations.

58 CHAPTER 2

The Perceptron Convergence Procedure

One solution to this dilemma is to base learning on the difference
between a unit’s actual output and its desired output. Two early
techniques were proposed by Rosenblatt (1959, 1962) and Widrow
and Hoff (1960). The approaches were very similar, and we will
focus here on Rosenblatt’s.

Rosenblatt proposed what he called the Perceptron Conver-
gence Procedure (PCP; Rosenblatt, 1962). This is a technique which
makes it possible to start with a network of units whose connections
are initialized with random weights. The procedure specifies a way
to take a target set of input/output patterns and adjust the weights
automatically so that at the conclusion of training the weights will
yield the correct outputs for any input. Ideally, the network will
even generalize to produce the correct output for input patterns it
has not seen during training.

The way that learning works is that the input pattern set is pre-
sented to the network, one pattern at a time. For each input pattern,
the network’s actual output is compared with the target output for
that pattern. The discrepancy (or error) is then used as a basis for
changing weights to inputs, and also changing the output node’s
threshold for firing. How much a given weight is changed depends
both on the error produced and the activation coming along a
weight from a given input.! The underlying goal is to minimize
error on an output unit by apportioning credit and blame to the
inputs (the intuition being that if you have made a mistake, you
should probably play more attention to the people who were shout-
ing loudest at you to go ahead and make that mistake).

This learning procedure (as well as the Widrow-Hoff rule)
addresses some of the limitations of Hebbian learning, but it has its
own limitations. It only works for simple two-layer networks of
input units and output units. This turns out to be an unfortunate
limitation. As Minsky and Papert (1969) showed, there are classes of
problems which can not be solved by two-layer networks of percep-

1. There are actually several variations; in some the weight and thresholds
change by a constant.

Why connectionism? 59

trons. The best known of these is the exclusive-OR (XOR) problem,
but the basic problem is a very deep one which occurs in many situ-
ations. Two-layer networks are rather like 5-R pairs in classical psy-
chology. What is required is something between input and output
that allows for internal (and abstract) representations.

Similarity in neural networks—a strength
and a weakness

One of the basic principles which drives learning in neural net-
works is similarity. Similar inputs tend to yield similar outputs.
Thus, if a network has learned to classify a pattern, say 11110000, in
a certain way then it will tend to classify a novel pattern, e.g,
11110001, in a like fashion. Neural networks are thus a kind of anal-
ogy engine. The principle of similarity is what lets networks gener-
alize their behaviors beyond the cases they have encountered
during training.

In general, the similarity metric is a good rule-of-thumb. Lack-
ing other information, it is reasonable that networks (and people)
should behave in similar ways given similar situaticns. On the
other hand, there are clearly cases where we encounter two patterns
which may resemble each other superficially, but which should be
treated differently. A child learning English must learn that
although “make” and “bake” sound almoest the same, they form the
past tense in different ways. Even more extreme is the case where
two words may be identical at the surface level. For instance, the
word “did” can either be a modal (as in “I did go”) or a main verb
(as in “I did badly”). Despite their surface identity, we must learn to
treat them differently. More prosaically, kittens and tigers may
share many physical features but we do not want to treat them in
the same way. The problem thus is that although similarity is often
a good starting point for making generalizations, and lacking other
information we do well to rely on similarity, there are many circum-
stances in which similarity of physical form leads us astray. We
might still wish to invoke the notion of similarity, but it is an

60 CHAPTER 2

abstract or functional kind of similarity. Kitty cats, dogs, fish, and
parakeets are dissimilar at the level of appearance but share the
abstract feature “domestic animal”; tigers, rhinoceri, wild boar, and
cobras do not look at all alike but are similar at the more abstract
level of being “wild animals.”

The neural network learning procedures we have described so
far (Hebbian learning and the PCP with two-layer networks) have
the important limitation that they can only learn to generalize on
the basis of physical similarity. (To make this more precise, by phys-
ical similarity we mean here similarity of input pattern.) In fact, the
PCP is actually guaranteed to discover a set of weights which give
the right response to novel inputs, provided the correct response
can be framed in terms of physical similarity (defined in a certain
way). Conversely, when the correct response cannot be defined in
terms of similar inputs yielding similar outputs, the PCP is guaran-
teed to fail!

One of the best known problems which illustrates the limitation
of the PCP and simple two-layer networks is the Exclusive Or prob-
lem (XOR). XOR is a what is known as a Boolean function. (A Boolean
function just means that we have to take some set of inputs, usually
1s and 0s, and decide whether a given input falls into a positive or a
negative category. These categories are often denoted “true” or
“false,” or if we are dealing with networks, produce output node
activations of 1 or 0.) In the case of XOR, the inputs consist of a pair
of numbers (either one of which can be a 1 or a 0), and the task is to
decide whether the pair falls into the “true” category or the “false”
category. For a network this would mean taking inputs of the form
shown in Table 2.1 and producing the appropriate output value.

TABLE 2.1

INPUT OUTPUT
0 0 0

— O =

1 0
1 1
0 1

Why connectionism? 61

Why can’t a two-layer perceptron network solve this problem?
Let’s imagine we have a network that looks like the one shown in
Figure 2.4. It is not hard to see why this problem cannot be solved

output

wy Wwa

inputs

FIGURE 2.4 two-layer network that cannot learn to solve the XOR
problem.

by such a network. Consider what we would be asking of the two
weights (w; and w,) in this network in order to produce the correct
input/output mappings.

First, remember that these weights are multipliers on the
inputs, so when we want an output to be “true” (i.e., 1) at least one
of the inputs must be a 1, and at least one of the weights must be big
enough so that when the two numbers are multiplied, the output
node turns on. Now, the first two patterns (0,0 and 1,1) have to pro-
duce a 0 on the output. For that to happen, the weights connecting
the inputs to the output node be sufficiently small that the output
node will remain off even if both input nodes are on. That’s easily
enough obtained: just set both weights to 0. That way, even if both
inputs are on (1,1), the output unit will remain off.

But this is at odds with what is required for the third and fourth
patterns (01 and 10). In these cases, we need the weights from either
input to be sufficiently big such that one input alone will activate
the output. Thus we have contradictory requirements; there are no
set of weights which will allow the output to come on just in case
either of the inputs is on, but which will keep it off if both are on.

There is another way of thinking about this problem, and it’s
worth introducing now because it allows us to introduce a frame-
work for thinking about representations in networks which we have
found very useful. It is also a bit more intuitively understandable
than simply thinking about weights and such.

62 CHAPTER 2

We have referred to patterns such as 0,0 and 1,1 as vectors. A
vector can be thought of either as a collection of numbers, or as a
point in space. If our vectors consists of two numbers, as in the case
of our inputs in this example, then the vector peints in a two dimen-
sional space, with each number indicating how far out along the
dimension the point is located. We could thus visualize the four
input patterns that make up the XOR problem in the two dimen-
sional space shown in Figure 2.5.

input 2

input 1

FIGURE 2.5 Spatial representation of the four input patterns used in
XOR.

Thinking of these patterns as points in space now gives us a
way of defining a bit more precisely what we mean by similarity. It
is simple: we judge the similarity of two vectors by their (Euclid-
ean) distance in space. As a first pass at understanding why XOR is
difficult, notice that the pairs of patterns which are furthest apart—
and therefore most dissimilar—such as 0,0 and 1,1 are those which
need to be grouped together by the function. Nearby patterns such
as 0,1 and 0,0, on the other hand, are to be placed in different
groups. This goes against the grain.

The problem is actually a bit worse. Technically, the difficulty is
that the input/output weights impose a linear decision bound on
the input space; patterns which fall on one side of this decision line
are classified differently than those patterns which fall on the other
side. When groups of inputs cannot be separated by a line (or more
generally, a hyperplane) then there is no way for a unit to discrimi-
nate between categories. This is shown in shown in Figure 2.6. Such
problems are called nonlinearly separable (for the simple reason that
the categories cannot be separated by a line).

Why connectionism? 63

input 2
input 2

input 1

input 1

(a) (b (©

FIGURE 2.6 Geometric representation of the XOR problem. If the four
input patterns are represented as vectors in a two-dimensional space,
the problem is to find a set of weights which implements a linear
decision boundary for the output unit. In (a), the boundary implements
logical AND. In (b), it implements logical OR. There is no linear
function which will simultaneously place 00 and 11 on one side of the
boundary, and 01 and 10 on the other, as required for (c).

Although this example may seem a bit arcane, it is useful
because it illustrates the idea of vectors as patterns in space, of sim-
ilarity as distance in space, and of the problem that can arise when
patterns which are distant in space (and therefore inherently dis-
similar) must nonetheless be treated as though they were similar.

The problem, then, is how to take advantage of the desirable
property of networks which allows similarity to have a role in gen-
eralization, while still making it possible to escape the tyranny of
similarity when it plays us false. We want to be able to define simi-
larity at an abstract and not only form-based level. (Or, to put it
another way, we want to have our cake and eat it too.)

Solving the problem: Allowing internal representations

It turns out that this problem is relatively easy to solve. With an
extra node or two interposed between the input and output (see
Figure 2.7) the XOR problem can be solved.? These additional nodes

2. Atwo-layer network can actually solve XOR if the output is not a percep-

tron-like unit. More precisely, the output cannot have an activation function

which is a monotonically increasing function of its input. A cosine activation
function, for instance, will suffice.

64 CHAPTER 2

output output
hidden units hidden unit
inputs inputs

(a) {b)

FIGURE 2.7 Two architectures for solving the XOR problem. In both
cases, at least one internal (“hidden”) unit is required.

are often called “hidden units” because they are hidden from the
world. They are equivalent to the internal representations we
invoke in psychological theorizing. The inputs and outputs to hid-
den units are confined to other parts of the network. Hidden units
are extraordinarily powerful; they make it possible for networks to
have internal representations of inputs which capture the more
abstract, functional relationships between them. Indeed, it is tempt-
ing, and not entirely unwarranted, to think of input units as analo-
gous to sensors, output units as motor effectors, and hidden units
as interneurons. However, while this metaphor captures an impor-
tant aspect of what units do, we stress that there are occasions in
which inputs and outputs may be interpreted in very different ways
and not correspond to sensory/motor maps at all. Input similarity
still plays an important role, and all things being equal, the physical
resemblance of inputs will exert a strong pressure to induce similar
responses. But hidden units make it possible for the network to
treat physically similar inputs as different, as the need arises. The
way they do this is by transforming the input representations to a
more abstract kind of representation.

We can use the example of XOR to illustrate this point. Once
again the spatial interpretation of patterns proves useful. In
Figure 2.8 we see in (a) what the inputs “look like” to the network.
The spatial distribution of these patterns constitutes the intrinsic
similarity structure of the inputs. The vectors representing these
points in space are then passed through (multiplied) the weights
between inputs and hidden units. This process corresponds to the

Why connectionism? 65

input 2
hidden unit 2

o -
o -
Py

hidden unit 1 output
(a) (b) ©

FIGURE 2.8 Transformation in representation of the four input patterns
for XOR. In (a) the similarity structure (spatial position) of the inputs is
determined by the form of the inputs. In (b) the hidden units “fold”
this representational space such that two of the originally dissimilar
inputs (1,1 and 0,0) are now close in the hidden unit space; this makes
it possible to linearly separate the two categories. In (c) we see the
output unit’s final categorization (because there is a single output unit,
the inputs are represented in a one-dimensional space). Arrows from
(a) to (b) and from (b) to (c) represent the transformation effected by
input-to-hidden weights, and hidden-to-output weights, respectively.

first arrow. The weights from input to hidden units have the effect
of transforming this input space; the input space is “folded,” such
that the two most distant patterns (0,0 and 1,1) are now close in the
hidden unit space. (Remember that hidden unit activation patterns
are vectors too, so we can graph the location of the activations pro-
duced on the hidden layer by any set of inputs.) This reorganization
sets things up so that the weights to the output unit (second arrow,
between (b) and (c¢)) can impose a linear decision bound, the line
cutting across the space in (b), and resulting in the classification
shown in (c).

Having said that hidden units can be used to construct internal
representations of the external world which solve difficult problems
(in fact, Hornik, Stinchcombe, and White, 1989, have proven that a
single layer of hidden units gives networks the power to solve
essentially any problem), all might seem rosy. But there’s still a
problem. It is one thing for a network to be able to solve a problem,
in principle; this merely says that there exists some set of weights
which enable the network to produce the right output for any input.
It is another thing for the network to be able to learn these weights.

66 CHAPTER 2

So in fact, although it had long been known that more complex mul-
tilayered networks could solve problems such as XOR, the real chal-
lenge (which Minsky and Paper suggested probably could not be
solved)} was how to train such networks. The PCP works with two
layer networks, but not when there are additional hidden layers.

Fortunately, there are several solutions to this problem. One of
the best known is called backpropagation of error (Rumelhart, Hin-
ton, & Williams, 1986). Because many of the simulations we
describe in this book use this learning procedure, we shall spend a
bit of time describing how it works, at least at a general level.

Backpropagation of error (informal account)

“Backprop,” as it has come to be known, works very much like the
PCP (or the Widrow-Hoff rule, which is also very similar; Widrow
& Hoff, 1960). Recall that the approach of the PCP is to adjust the
weights from input unit(s} to output unit(s) in such a way as to
decrease the discrepancy between the network’s actual output and
its desired output. This works fine for the weights leading to out-
puts, because we have a target for the outputs and can therefore cal-
culate the weight changes. When we have hidden units, however,
the question arises: How shall we change the weights from inputs
to hidden units? The strategy of credit/blame assignment requires
that we know how much error is already apparent at the level of the
hidden units—even before the output unit is activated. Unfortu-
nately, we do not have a predefined target for the hidden units, only
for the output units. So we cannot say what their activation levels
should be, and therefore cannot specify an error at this level of the
network.

Backprop solves this problem in a clever but entirely reasonable
way. The first step is to figure out what the error is at the level of
output units (just as in the PCP). This error is simply the difference
between the activation we observe on a given output unit, and the
activation it is supposed to have (commonly called the target or
teacher value).

The second step is to adjust the weights leading into that unit so
that in the future it is either more or less activated, whichever is

Why connectionism? 67

needed in order to decrease the error. We can do this on all the
weights leading into the output unit. And if there are more than one
output units, we simply repeat the same two steps (error calcula-
tion; weight change calculation) for each one, using each unit’s own
target to determine the error.

Now we come to the question of how to change the weights
leading into the hidden units. The procedure we used for the hid-
den to output weights worked because we knew the target values
for output units. How do we determine target values for hidden
units? We assume that each hidden unit, because it is the thing
which excites (or inhibits) the output units, bears some responsibil-
ity for the output units’ errors. If a certain output unit is very far
from its target value, and has been highly activated by a certain hid-
den unit, then it is reasonable to apportion some of the blame for
that on the hidden unit. More precisely, we can infer the shared
blame on the basis of (a) what the errors are on the output units a
hidden unit is activating; and (b) the strength of the connection
between the hidden unit and each output unit it connects to. Hence
the name of the algorithm: We propagate the error information
{often called the error signal) backwards in the network from out-
put units to hidden units. Notice that this same procedure will work
iteratively. If we have multiple layers of hidden units, we simply
calculate the lower hidden layers’ error based on the backpropa-
gated error we have collected for the higher levels of hidden layers.

Formal account

This informal account of backprop can be made somewhat more
explicit and precise. In the remainder of this section we will attempt
to provide a more rigorous treatment of the way the backpropaga-
tion learning works. Although not necessary for understanding
how backprop works at an intuitive level, the formal account is
worth at least perusing. The notation may seem daunting to those
unfamiliar with mathematical formalism, but it is really just a short-
hand to more compactly represent the concepts we have just dis-
cussed.

68 CHAPTER 2

We said that the first step in the learning algorithm was to cal-
culate the errors on the output units. We do this a unit at a time.
Since the procedure is normally the same for all units, for the pur-
poses of generality we will refer to an output unit with the index i.
We will call the error for that unit ¢;,. The observed output for that
same unit will be represented as o, and the output unit’s target
value will be 7. Computing the error is simple. It is just

e; = 1;-0, (EQ2.4)

Now that we know the error that is being produced for a unit,
we want to adjust the weights going into that unit so that in the
future it will be more or less activated, but in a way that reduces the
error we just calculated. Since weights connect two units, we will
use the subscripts i to represent the unit on the receiving end of the
connection, and the subscript j to represent the sending unit. The
weight itself can be referred to as w;;—so the first subscript always
refers to the receiving unit and the second subscript to the sending
unit. The change in the weight, which is what we want to calculate,
is Aw;.

The weight adjustment should be such that the error will be
decreased as the weights are changed. This notion is captured by a
construct called a partial derivative, which tells us how changes in
one quantity (in our case, network error) are related to changes in
another quantity (here, change in weights). Therefore, letting net-

work error be symbolized as E, and the symbols a—af to represent
i

the partial derivative of the error with respect to the weight, then
the equation for the weight change can be formalized as

Aw,, = - (EQ 2.5)

J Tlawij

(where n is a small constant of proportionality called the learning
rate).

We will not give the actual computations which can be per-

formed on the partial derivative in order to convert it to a more

usable form (see Rumelhart, Hinton, & Williams, 1986); we simply

Why connectionism? 69

report the result that the right-hand side of Equation 2.5 can be cal-
culated as

Aw,. =M. 0, (EQ 2.6)

The quantities on the right-hand side of Equation 2.6 are now in a
form which we can identify and begin to use in training a network.

This equation says that we should change the weights in accord
with three things (corresponding to the three symbols on the right-
hand side). First, we are trying to find a set of weights which will
work for many different patterns. So we want to be cautious and
not change the weights too much on any given trial. We therefore
scale the calculated weight change by a small number. This is the
term n and is called the learning rate. Skipping to the third term,
0;,, we also make our weight change on the connection from the
sender unit j to receiver unit i be proportional to j's activation. That
makes sense; after all, if the sender unit hasn’t contributed any acti-
vation to unit 7, it won’t have contributed to i’s error. The second
subscript p in the expression o;, indicates that we are only consid-
ering the activation of unit j in response to input pattern p. Different
input patterns will produce different activations on unit j.

Finally, the middle term, 3, , reflects the error on unit i for input
pattern p. We have spoken previously of the error as being simply
the difference between target and output; the term 8ip includes this
but is a bit more complicated. The reason for that just has to do with
the calculation of the partial derivative in Equation 2.5. Although
we will not attempt to explain the derivation here, there is one
interesting consequence to the definition of these §,, terms which
we comment on below.

For an output unit (7), this term is defined as

8, = (tifgi)f’(”eﬂ') (EQ2.7)

i
which says that our error is, straightforwardly, the difference
between the target value for unit i on this pattern and the actual

output. This discrepancy is modulated by the derivative of the
unit’s current activation. As we said, we will not attempt here to

70 CHAPTER 2

justify the presence of this derivative; it simply has to do with the
way Equation 2.5 is worked out. However, this term has an impor-
tant effect on learning.

The derivative of a function is its slope at a given point. The
derivative measures how fast (or slowly) the function is changing at
that point. If we look back at Figure 2.2, which shows the activation
function for sigmoidal units, we see that the slope is steepest in the
mid-range and decreases as the unit’s activation approaches either
extreme. This has important consequences for learning which we
shall return to several times in this book. When networks are first
created, they are typically assigned random weights values clus-
tered around 0.0. This means that during early learning, activations
tend to be in the mid-range, 0.5 (because no matter what the inputs
are, they are being multiplied by weights which are close to 0.0;
hence the net input to a unit is close to 0.0, and the activation func-
tion maps these into the mid-range of the receiving unit’s activa-
tion). There is a further consequence: When weight changes are
computed, the error term is modulated by the derivative of the unit
(see Equation 2.7). This derivative is greatest in the mid-range.
Therefore, all things being equal, the weights will be most malleable
at early points in learning. As learning proceeds, the impact of any
particular error declines. That’s because once learning begins,
weights will deviate more and more from 0.0 and the net input to a
unit will tend to produce its minimum or maximum activation lev-
els.

This has both good and bad consequences. If a network has
learned the appropriate function, occasional outlier examples will
not perturb it much. But by the same token, it may be increasingly
difficult for a network to correct a wrong conclusion. Ossification
sets in. The interesting thing about this phenomenon, from a devel-
opmental viewpoint, is that it suggests that the ability to learn may
change over time—not as a function of any explicit change in the
mechanism, but rather as an intrinsic consequence of learning
itself. The network learns to learn, just as children do.

We have just seen how the learning algorithm works for
weights from hidden to output units. How do we compute the §,,
for hidden units? We cannot use the difference between the target

Why connectionism? 71

value and actual output, because we don’t know what the targets
for hidden units should be. But as we pointed out earlier, we can
calculate a hidden unit’s error in an indirect fashion from the error
of the output units, because each hidden unit bears some responsi-
bility for those errors. So for any hidden unit i, we collect the error
of the k output units to which it projects, weighted by the connec-
tions between them, and use that sum:

8; = f'(net)Y 8wy, (EQ 2.8)
k

This procedure can be used for networks with arbitrarily many lev-
els of hidden units.

In summary, backprop is an extremely powerful learning tool
and has been applied over a very wide range of domains. One of the
attractions is that it actually provides a very general framework for
learning. The method implements a gradient descent search in the
space of possible network weights in order to minimize network
error; but what counts as error is up to the modeler. This is most
often the squared difference between target and actual output (as
described here), but in fact, any quantity which is affected by
weights may be minimized.

Learning as gradient descent in weight space

Because the idea of gradient descent in weight space figures impor-
tantly in later chapters, we wish to be clear about what this means.
A graphical representation is helpful here. Imagine a very simple
network of the sort shown in Figure 2.9a.

There are two trainable weights in the network shown in
Figure 2.9a. Let us suppose that we have a data set which we wish
to train the network on. We might systematically vary the two
weights through their possible range of values. For each combina-
tion of weights, we could pass the training data through the net-
work and see how well it performs. We could then graph the
resulting error as a function of all possible combinations of the two
weights. A hypothetical version of such a graph is shown in
Figure 2.9b. Regions of the surface which are low along the z axis

72 CHAPTER 2

wy

Error

Wi

(a)

FIGURE 2.9 (a) Simple network with 2 trainable weights. (b) A
hypothetical graph depicting the error produced for some imaginary
set of input/output training patterns, for all possible values of weights
w; and w,. Low regions on the surface correspond to low error.

tell us that the combination of weights (x and y axes) produce low
error and so these are weight settings which are desirable.

This same technique might be used, in principle as a form of
learning. We could discover good regions of weight space empiri-
cally by sampling the entire space. But this would be cumbersome
and in networks of any complexity, quite impractical. What back-
propagation (and many other neural network learning algorithms)
provides is a technique for starting at some random point on this
surface and following the downward gradient. If we are fortunate,
there will exist some combination of weights which solves the prob-
lem, and we will find it.

Is success guaranteed? Not at all. We know from theoretical
arguments that any problem can be solved with a three-layer net-
work (Hornik, Stinchcombe, & White, 1989) but we do not know g
priori the precise architecture needed to solve that problem (how
many hidden units, what pattern of connectivity, etc.). Further-
more, if in the process of following the gradient we take very big
steps as we change our weights we might overshoot a good region
of weight space. Or we might find ourselves trapped in a region
which is locally good but not perfect (this is called a local minimum).
Since the gradient at this spot points up—all weight changes lead to
poorer performance—we may be stuck. In fact, one of the hypothe-

Why connectionism? 73

ses of this book is that evolution produces a developmental profile
which interacts with learning in just such a way as to cleverly help
us avoid such local minima.

Other architectures and learning algorithms

Backpropagation and Hebbian learning are perhaps the best known
and most widely used connectionist learning algorithms. There are
a number of other alternative techniques for training networks,
however. We chose not to delve into these largely because to do so
would tax the patience of our readers, and there are many fine texts
which give a more comprehensive presentation of network learning
(see, for example, Hertz, Krogh, & Palmer, 1991 for an excellent
mathematical presentation; and Bechtel & Abrahamsen, 1991, for a
more cognitively/philosophically oriented review). Furthermore,
the majority of the work which we will discuss employs either Heb-
bian or backpropagation learning, and so it is most important to us
that readers be acquainted with these approaches. We simply wish
to emphasize that the connectionist paradigm embraces a multitude
of approaches to learning, and the interested reader should not
imagine what we have presented here exhausts the range of possi-
bilities.

Issues in connectionist models

As exciting as the early successes in connectionist modeling have
been, there remain a number of important challenges. We would
like now to turn to some of the issues which the field is currently
focussing or.

Representing time

The networks we described in talking about backpropagation (e.g.,
the networks shown in Figure 2.4 and Figure 2.7) are called “feed-
forward networks.” The flow of activation proceeds from input

74 CHAPTER ?

through successive layers and culminating in output units. The flow
of information is unidirectional, and at the conclusion of processing
an input, all activations are wiped clean and the next input is
received.

Processing in such networks is atemporal, in the sense that the
activations of units reflects only the current input. The only sense in
which time figures in is if the network is still undergoing training,
in which case the weight changes implicitly reflect the time course
of learning. We might think of these changes in connection strength
as implementing semantic long-term memory, in much the same
way that Hebb envisioned it.

Early models attempted to circumvent the lack of temporal his-
tory in processing through an ingenious trick. Input units would be
conceptualized as being divided into groups, with each group pro-
cessing one input in a series. In the simplest case, for example, 10
temporally ordered inputs might be presented having the first input
unit respond to the first event, the second input unit respond to the
second event, etc. All 10 events/inputs would then be processed
simultaneously.

Although this approach has been used to good effect in a num-
ber of models (e.g., McClelland & Rumelhart 1981; McClelland &
Elman, 1986; Sejnowski & Rosenberg, 1986), it has some very basic
defects (see Elman, 1990, for review). This has led researchers to
investigate other ways of representing time. An enormous part of
the behavior of humans and other animals is clearly time-depen-
dent, and so the problem is a serious one. What would seem to be
lacking in the feedforward network is an analog to short-term or
working memory.

Recurrent networks implement short-term memory by allowing
connections from nodes back to themselves, either directly or indi-
rectly, as in Figure 2.10. In this way, the network’s activity at any
point in time can reflect whatever external input is presented to it,
plus its own prior internal state (where that state corresponds to
activations at prior points in time}. There exist a variety of algo-
rithms and architectures which make such recurrence possible (e.g.,
Elman, 1990; Jordan, 1986, Pearlmutter, 1989; Pineda, 1989; Rumel-

Why connectionism? 75

output

hidden units

inputs

FIGURE 210 A recurrent network. The network has fully
interconnected hidden units; each hidden unit activates itself and the
other hidden unit. As a result, the current state (activation) of a hidden
unit reflects not only new input from the input units, but the hidden
units” prior activation states.

hart, Hinton, & Williams, 1986; Stornetta, Hogg, & Huberman, 1988;
Tank & Hopfield, 1987; Williams & Zipser, 1989).

Scaling and modularity

The examples we have used sc far have involved networks which
are rather simple in design. The networks contain relatively few
units; they tend to have uniform internal structure (e.g., they are
organized into layers in which each layer is fully connected to the
next layer); and they are trained on tasks which are usually very
simplified versions of real-world situations.

No apologies are needed for such simplifications. In many cases
the goal is to abstract away from irrelevant complexity in order to
focus on the heart of a problem. In other cases, the simplification
may be justified by the immaturity of the technology. We are still at
a point where we are trying te understand basic principles. Much of
the research is empirical, and it is useful to work with systems
which are tractable.

There are also potential hazards associated with these simple
architectures. Let us mention two.

First, there is the problem of scaling up to bigger and more real-
istic problems. For complex and large-scale problems, it is not clear
that networks with uniform architecture are optimal. As a network
grows in size (as it must, for larger-scale problems), the space of

76 CHAPTER 2

potential free parameters—weights—grows exponentially, whereas
the size of the training data typically grows more slowly. Tech-
niques such as gradient descent typically do not do well in search-
ing out good combinations of weights when the weight space is
very large relative to the training data available. In Figure 2.9 we
showed a very simple network and its associated (hypothetical)
weight space. Gradient descent relies on the information provided
by training examples to find the set of weights which yield mini-
mum error. Imagine how much more complicated that task may be
in a search space containing hundreds of weights, particularly if we
have a relatively small number of examples. We are likely to get
“trapped” in regions of weight space which work for a few of the
examples but not for others.

One way to address the problem of determining optimal net-
work architectures involves the use of what are called “constructive
algorithms.” These are procedures which allow a network to be
dynamically reconfigured during training through the addition or
deletion of nodes and weights. One of the best known techniques
was proposed by Scott Fahlman, and is called Cascade Correlation
(Fahlman & Lebiere, 1990). We'll see a developmental example of
this in Chapter 3. Omitting details, this procedure works with a net-
work that initially contains no hidden units. It then adds new hid-
den units gradually in order to reduce error. A somewhat different
technique has been suggested by Steve Hanson (Hanson, 1990). In
Hanson’s scheme, connections weights are not discrete, but instead
have a mean and variance. As training progresses, if a weight’s vari-
ance grows too large the connection may split in two (hence the
name, “meiosis networks”). Dynamic configuration through prun-
ing has also been studied. Rumelhart (1987) and Weigend (1991)
found that in many cases, a network’s ability to generalize its per-
formance to novel stimuli was improved by gradually eliminating
weights, as long as this did not lead to increased error.

In addition to scaling, there is a second risk which can arise
with overly simple networks. This problem is subtler. Here the diffi-
cultly is not just that there are two few or two many units in the net-
work. It is that they are not connected in the best way. For example,
sometimes a problem which appears hard can be solved if it is first

Why connectionism? 77

decomposed into smaller pieces. Then, rather than have a single
network attempt to learn the entire problem as an undifferentiated
whole, we might more efficiently use a network architecture which
reflects the problem’s functional decomposition. This is the insight
which underlies a proposal by Jacobs and his colleagues (Jacobs,
1990; Jacobs, Jordan, & Barto, 1991; Jacobs, Jordan, Nowlan, & Hin-
ton, 1991).

As an example of a difficult function which can be made easier
if broken into pieces, Jacobs and colleagues point to the absolute
value function. The absolute value of a number is simply its “posi-
tive value”; if the number is already positive, then that is also its
absolute value. If the number is negative, then the absolute value
negates that, making it positive. Formally, the function is defined as

~x 1f (x<0)

F =1 it x20 (EQ 2.9)

This is a nonlinear function (because of the “bend” at 0), and
can be learned by a single network which has at least one hidden
unit. On the other hand, the function can also be learned by a net-
work which has two modules (e.g., such as shown in Figure 2.11).
Each module consists of a single linear unit, plus a simple gating
network which decides which output to use, depending on whether
the input is less than or greater than 0. Such a network should find
it easier to learn the task because each subcomponent is linear and
there are no hidden units.

Jacobs, Jordan and Barto (1991) have trained a network with
such an architecture to do the “what/where” task. In this task, the
network has to determine what an object is, and where it is in the
visual field. They found that this modular architecture facilitated
learning, compared with nonmodular networks. Furthermore, if
one of the expert networks is composed of units with linear activa-
tion functions, that module always learns to carry out the “where”
task.

We like this result, because it shows how it is possible for task
assignment to be innately determined, not on the basis of the task

78 CHAPTER 2

input
Expert Expert
Network 1 Netwoerk 2
Y1 Yo
[
Gating
G- Network

output (¥ = g.y: + Go¥s)

FIGURE 2.11 Modular network proposed by Jacobs, Jordan, and Barto
{1991). Input is sent to both expert networks, each of which is
specialized for one aspect of the task, and also to a gating network.
Both expert networks generate output; the expert network decides the
appropriate mixture, given the specific input.

per se, but rather the match between a task’s requirements and the
computational properties of network architectures. It is not neces-
sary that a piece of network be committed to a task in an explicit
and hard-wired fashion, with one set of “where” units and another
set of “what” units. Instead, the intrinsic capabilities of the module
simply select those tasks for which it happens to be suited. Thus,
the way in which the task/architecture mapping is specified may be
through biasing and not rigid assignment. The important lesson is
that some problems have natural good solutions; they have compu-
tational requirements which impose their own constraints on how
the problem can be solved. Nature does not always need to provide
the solution; it often suffices to make available the appropriate
tools which can then be recruited to solve the problems as they
arise.

Why connectionism? 79

Where does the teacher come from? Supervised vs.
unsupervised learning

Learning algorithms such as backprop depend crucially on a prior
notion of what good performance is. The training environment con-
sists of input/output patterns in which the output is a target or
teacher for the network. The error is defined as the discrepancy
between the network’s output and the target output (supplied by
the teacher pattern) which goes with the input. Is this assumption
of a teacher pattern psychologically reasonable?

In some cases, it is. For example, let us say we carry out an
experiment in which a subject is given some input, performs some
action, and then gets feedback. This scenario clearly resembles the
training regime which a network undergoes. The feedback is
exactly equivalent to the teacher for the network.

But it is not necessary to be quite so literal-minded. There is no
reason not to take a somewhat more abstract view of what a net-
work model is capturing. For instance, consider the case of learning
the various forms associated with different tenses, person, number,
and mood of verbs. There is no obvious teacher which is provided
to children (i.e., their learning experience typically consists simply
of hearing correctly inflected forms). On the other hand, suppose
we conceptualize the learner’s task as one of binding forms. The
child has to learn to associate a set of morphologically related forms
with each other. Failure to learn the correct associations would lead
the child to anticipate forms which are not confirmed by the actual
input; these failures would then constitute a kind of indirect
teacher. The teacher signal in this scenario is internally generated.
In fact, Nolfi, Parisi, and colleagues (Nolfi & Parisi, 1993, 1994, 1995)
have used an evolutionary approach in order to develop networks
which provide their own internal teacher in just such a manner.

Nonetheless, forms of training which require a teacher of any
sort—called “supervised learning”—clearly have a fairly restricted
domain within which they can be plausibly applied. In many cir-
cumstances it is not reasonable to suppose that the kind of detailed
feedback which is required is available, from any source. One
important goal of connectionist modeling has been to find ways to

80 CHAPTER 2

overcome this limitation, while hopefully retaining some of the
attractive aspects of gradient descent learning.

There are several ways in which the supervised learning para-
digm may be altered to make it more realistic. One form of training
involves what is called “auto-association.” In this task, a network is
given an input and is trained to reproduce the same input pattern
on the output layer. What makes this a non-trivial problem is that
such networks (such as the one shown in Figure 2.12) contain a nar-
row “waist” in the middle. This means that the network is forced to

output

input

FIGURE 2.12 An autoassociator network. The network is trained to
reproduce the input pattern on the output layer. The lower-
dimensionality of the hidden units requires that the network find a
more efficient encoding of the input patterns, and can be used for
feature discovery.

find a lower-dimensional representation of the inputs. Often these
internal representations capture interesting features of the inputs.
For example, Elman and Zipser (1988) trained autoassociators to
reproduce speech sounds, and found that hidden units learned to
respond to different classes of sounds (e.g., vowels, consonants, and
certain stops). This form of training also addresses the question of
where the teacher comes from, since in autoassociation, the teacher
is nothing more than the input itself. Minimally, all that is required
is a short-term memory.

Another task which is similar in spirit to autoassociation is the
task of predicting the future. The network shown in Figure 2.13 is
what has been called a simple recurrent network (Elman, 1990}, or
SRN. (The network is simple in the sense that the error derivatives

Why connectionism? 81

are propagated only one time step back into the past; this does not
prevent the SRN from storing information in the distant past, but
learning longer distance temporal dependencies may be difficult.).
An SRN contains recurrent connections from the hidden units to a
layer of context units. These context units store the hidden unit acti-
vations for one time step, and then feed them back to the hidden
units on the next time step. The hidden units thus have some record
of their prior activation, which means that they are able to carry out
tasks which extend over time. (Note that the hidden units may con-
tinue to recycle information over multiple time steps, and also will
find abstract representations of the time. So this sort of network is
not merely a tape-recording of the past.)

output]
hidden |
context
input

FIGURE 2.13 Simple recurrent network (SRN). Layers of nodes are
shown as rectangles.

Insofar as there are interesting sequential dependencies in the
training data, the SRN is often capable of discovering them through
learning to predict. The task of prediction has a certain ecological
validity, since there is evidence that anticipation plays a role in
early learning in many domains. There are also biological mecha-
nisms which are plausibly implicated in mediating learning
through prediction (Cole & Robbins, 1992; Morrison & Magistretti,
1983). As is true for autoassociation, the prediction task requires no
special teacher, since the target output is simply the next input. All
that is required to be psychologically plausible is to assume that
this processing can lag a few steps behind the actual input. These
forms of learning might be called “self-supervised learning.”

Finally, there exists a form of supervised training called “rein-
forcement learning” (Barto & Andanan, 1985; Barto, Sutton, &

82 CHAPTER 2

Anderson, 1983; Sutton, 1984) in which the teacher takes a simpler
form. Rather than being instructed on exactly which aspect of an
output was right or wrong (remember that in backprop, each output
unit gets an error signal), the network is simply given a scalar value
reflecting its overall performance—a little like being told you're get-
ting warmer {(closer to the solution) or colder {further from the solu-
tion). The problem, of course, is figuring which part of the output is
contributing to the error, and so it is not surprising that reinforce-
ment learning is much slower than fully supervised learning. But it
is certainly easier to believe that this sort of situation—in which we
are only told how well we did, and not why—is a psychologically
plausible one.

In addition to these weakened forms of supervised learning,
there are training regimes which involve “unsupervised learning.”
Hebbian learning is a paradigm example of this. Here, the network
weights are changed according to the correlated activity between
nodes which are receiving input from the environment. None of
that input need be instructive in any direct sense; the network may
be thought of as more or less passively experiencing the environ-
ment and striving to discover correlations in the input. Many other
forms of unsupervised learning have been proposed, including
competitive learning (Grossberg, 1976; Rumelhart & Zipser, 1986),
feature mapping and vector quantization (Kohonen, 1982; Nasra-
badi & Feng, 1988), and adaptive resonance theory (Carpenter &
Grossberg, 1987, 1988). These approaches are particularly relevant
when the goal is to uncover latent features or categories in a set of
stimuli.

Note, however, that although these training regimes may rea-
sonably be called unsupervised, it is not exactly the case that these
approaches are entirely theory-neutral or non-parametric. Each
learning regime attempts to optimize some quantity, whether it be
correlations, or mutual information, or harmony, etc. So there is still
supervision; it’s just folded into the learning rule itself rather than
into the environment being learned. We point this out only as a
reminder that no learning rule can be entirely devoid of theoretical
content nor can the tabula ever be completely rasa.

Why connectionism? 83

Another promising approach which shares the goal of unsuper-
vised learning has been proposed by Becker and Hinton (1992) In
their multiple maps scheme, Becker and Hinton replace the external
teacher with internally generated teaching signals. As they put it,
“these signals are generated by using the assumption that different
parts of the perceptual input have common causes in the external
world” (Becker & Hinton, 1992; p. 372). Thus, the principle of coher-
ence functions as the teacher. Practically, what this involves is having
separate parts of the network receive different (but related) parts of
the perceptual input. Each module then learns to produce outputs
which provides maximum information about the way in which the
other will respond to various inputs. Becker and Hinton have
shown that such a scheme can be applied to the problem of extract-
ing depth from random dot stereograms. In principle, one can imag-
ine that the approach could be used to discover correspondences
across modalities as well. This could be very useful in modeling
infants” capacity for cross-modal imitation, for example. Other
related appreaches (related in terms of goals, while using different
algorithms) have been proposed by Kohonen (1982) and Zemel and
Hinton (1993).

A final note on Hebbian learning: Earlier, we talked about the
computational limitations in what can be learned solely on the basis
of correlated activity. Despite these limitations, we emphasize that
Hebbian learning plays an extremely important role in many mod-
els, particularly those which are concerned with biologically plausi-
bility. There are similarities between Hebbian learning and long-
term potentiation (LTP; for example, in hippocampal neurons),
according to some authors (McNaughton & Nadel, 1990; Rolls,
1989). Furthermore, despite the limitations, a great deal can be
learned through correlations. For example, as we shall see, Hebbian
learning provides a plausible model of how the visual cortex might
self-organize to produce visual ocular dominance columns (Miller,
Keller, & Stryker, 1989; see discussion below), orientation selective
cells (Linsker, 1986, 1990), and to detect dilation and rotation (Ser-
eno & Sereno, 1991). Hebbian learning also plays an important role
in the models of object detection (O'Reilly & Johnson, 1994; O’Reilly
& McClelland, 1992) and of synaptic pruning (Kerszberg, Dehaene,

84 CHAPTER 2

& Changeux, 1992; Shrager & Johnson, in press) which we discuss
in Chapter 7. (See Fentress & Kline, in press, for a collection of
recent work involving Hebbian learning.)

Finding first principles

Connectionism comes in many flavors. In the past decade, there has
been a stunning explosion of architectures, algorithms, and applica-
tions. Models have been developed of everything from inter-cellu-
lar interactions to lobster stomach muscles, expert systems,
acquisition of grammatical gender in German, and plasma flow in
nuclear reactions. As with any field, there are camps and factions
which have very different goals. Given this diversity, is there any-
thing shared in common? Are there any basic principles which
underlie the connectionist approach, and which these different
models have in common?

We think so. The differences are of course important, sometimes
cut deep, and in fact represent a positive state of affairs. Such fer-
ment and diversity are critical to the health of the field (one of our
own goals in this book is to urge new directions for connectionists).
But when all is said and done, we nonetheless note that there are
recurring characteristics which appear in connectionist models and
which are, sometimes tacitly, sometimes explicitly, valued by mod-
elers.

We would like to make a stab at suggesting what some of these
“first principles” might be. We do so not with the goal of establish-
ing a catechism for determining who is a card-carrying connection-
ist, but simply because it is important to understand why the
models work. To what extent does their behavior reflect superficial
differences with other computational frameworks, and to what
extent does it flow from underlying properties? Unless we have
some notion of what these underlying properties are, such ques-
tions cannot be satisfactorily answered. There is another reason for
trying to understand what makes these models tick. We have found
the most useful aspect of connectionism to be the concepts it makes

Why connectionism? 85

available. Thinking like a connectionist need not require doing sim-
ulations, in our view. What is more important is being able to use
the conceptual toolbox.

With this perspective, we would like now to focus here on four
aspects of connectionist models which seem to us to be particularly
relevant to developmental issues: the problem of control, the nature of
representation, nonlinear responses, and the time-dependent nature of
learning.

Who's in charge? Eliminating the homunculus

One of the banes of cognitive science is the homunculus—the idea
that our mental life is controlled by an inner being who observes the
world through the retinal “screen,” listens to sounds through the
cochlear “earphones,” and guides our actions by throwing switches
that innervate our muscles. (If one were a preformationist, one
would expect to find this fellow in miniature in the fertilized egg.)
The logical problem of such a scenario, with its potential for
infinite regress, is self-evident. But although the homunculus is
today not a popular fellow among most self-respecting cognitive
scientists, he may often be found lurking in disguise in many theo-
ries. The majority of theories of planning and control, for example,
presuppose some controlling entity which basically does what a
homunculus does. It is easy to see why such a fellow would be use-
ful. Without him, there’s a real paradox: If something is not in con-
trol of behavior, then why is behavior not uncontrolled?
Connectionist models implement an appealing solution to this
problem: Global effects arise from local interactions. Ceordinated
activity over the entire system thus occurs as an emergent property,
rather than through the efforts of a central agency. This is not a new
idea, certainly. The Belousov-Zhabotinsky reaction, in which
entirely local oxidation reactions give rise to formation of waves
over macroscopic distances, is a classic example of emergent behav-
ior (see Chapter 3). Alan Turing (1952) was one of the first to show
how such reaction/diffusion (RD) processes might be involved in
cell patterning. More recently, RD models have been proposed for a
number of developmental phenomena, such as the formation of the

86 CHAPTER 2

tiger’s stripes (or a cheetah’s spots, depending on initial condi-
tions), or the development of visual ocular dominance columns (see
below). Connectionist models are attractive because they provide a
computational framework for exploring the conditions under which
stch emergent properties occut.

Computation is local in (most) connectionist models in two
senses. First, nodes often have restricted patterns of connectivity;
they connect only to some of the other nodes in the network. In this
regard, they resemble neurons, which usually have a local area
within which is there is dense interconnectivity and much sparser
connections to distant areas. The activity which emerges over the
entire assembly of units therefore reflects a complex process in
which many local interactions, most involving relatively simple
computations, yield a global state which is not the result of any sin-
gle unit.

Second, many learning algorithms use only local information
when changing system parameters (such as weights on connec-
tions). In the case of Hebbian learning, connections between units
are modified in a way which reflects the units’ joint activity. In the
case of backpropagation learning, each output unit has a local sense
of error and the weights into that unit are changed so as to reduce
that single unit’s error. (There are, to be sure, learning rules which
require knowledge of global error, but such rules are often criticized
for precisely this reason.) Let us give two examples of how local
computation and local learning may produce globally organized
behavior. The first example deals with the relatively low-level pro-
cess by which visual cortex might become organized. The second
example deals with the higher-level process by which the rules gov-
erning legal sequences of sounds in a language might be learned.

One of the notable characteristics of primary visual cortex in
many species (such as cat, monkey, and human) is the presence of
alternating patches of tissue which serve primarily one or the other
eye. These ocular dominance columns are not present from birth,
but in normal circumstances develop inevitably during the early
part of life. Figure 2.14 shows a surface view of such tissue in the
normal cat.

Why connectionism? 87

FIGURE 2.14 Ocular dominance patches in layer IV of the cat visual
cortex. The image is produced from serial autoradiograph following
injection of [PH]-amino acid into one eye. From LeVay, Stryker, & Shatz,
1978.

Since the majority of this tissue initially receives input from
both eyes, but the eventual preferential response is clearly affected
by experience (deprivation of input from one eye may disrupt the
process), an important question is how might this organization
arise. Miller, Keller, and Stryker (1989) and Miller, Stryker, and
Keller (1988) have shown by simulation one plausible explanation.
In their model, layer 4 “cortical” cells receive excitatory input from
both “retinal” sources (via the lateral geniculate nucleus} in such a
way as to preserve retinotopic organization; synapses from the two
eyes are nearly equal in strength. Intracortical connections also exist
and are modifiable by a Hebb-like learning rule.

Initially, the randomly assigned connection strengths result in a
nearly uniformly innervation from both eyes, as has been observed
in new-born kittens. This is shown in the top left panel of
Figure 2.15, marked T=0. As time progresses, there is a progressive
differentiation of the response, leading to patches which resemble
those found in the older kitten. These columns emerge as the result
of naturally occurring differences in the degree of correlation
between neighboring cells in each eye versus across eyes, along
with competitive interactions among layer 4 cells. From their analy-

88 CHAPTER 2

X

FIGURE 2.15 Development of ocular dominance columns in model by
Miller, Keller, & Stryker (1989). Degree of innervation from each eye is
shown by grayscale (right eye=white; left eye=black) at various time
steps during learning, from T=0 to T=80.

sis of the model, Miller and his colleagues are further able to
account for the precise form of the various pathologies which occur
as a result of different types of abnormal experience.

A second example illustrates emergent behavior at a much
higher level of cognitive phenomenon. The TRACE model (McClel-
land & Elman, 1986) was developed to account for a set of experi-
mental findings in the area of speech perception. TRACE used an
interactive activation architecture similar to that of the word per-
ception model discussed earlier (Figure 2.3). Different layers of
nodes carried out processing at the level of acoustic/phonetic fea-
ture extraction, phoneme recognition, and word recognition. Many
of the effects the model attempted to account for involved the
important role of context in speech processing, particularly as a
solution to the high degree of variability observed in the signal.

An interesting by-product of the architecture was observed,
however. The word-to-phoneme connections resembled those

Why connectionism? 89

shown for the word-to-letter connections in Figure 2.3. This meant
that the lexicon provided a very strong top-down influence on per-
ception; that influence usefully compensated for degraded or miss-
ing input. But it also had another effect. The model could be given
input corresponding to no known word. In that case, the correct set
of phonemes would be activated, but of course no single word node
would become active, although many partially similar words might
achieve some activation. The pattern of phoneme activation was not
unaffected by this activity at the word level, however, and notice-
ably different responses were obtained in the case of different sorts
of non-word input. The sequence “bliffle,” for example, was pro-
cessed much better than the sequence “dliffle,” in the sense that in
the first case all phonemes were clearly activated; but in the second
phonemes were barely active.

/111/

case the initial “d” and

In fact, this result is in close accord with the strong intuition
English speakers have that the first sequence is better (i.e., more
English-like) than the second. Linguists describe this tacit knowl-
edge which speakers have about acceptable sound sequences with
what are called phonotactic rules. English, for instance, is assumed
to have a rule which marks word-initial sequences such as “dl-”,
“tl-”, “bw-", “pw-" (among others) as ungrammatical. (Note that
these rules must be language-specific and have nothing to do with
articulatory difficulty, since many other languages happily tolerate
sequences which are illegal in English.)

It is easy to see where the preference for grammatical sequences
comes from. The non-word input activates many words which
resemble it; the more word-like the input, the more word nodes first
become active and then contribute top-down excitation to the pho-
neme level. In the case of very deviant input, few word nodes are
activated and the phoneme activations depend solely on bottom-up
input. (Subjectively, this is not unlike the experience of trying to
identify the sounds in an unfamiliar language.) Thus what looks
like rule-guided phonotactic knowledge arises simply as a result of
the statistics which are present in the lexicon.? This is another exam-
ple of emergent behavior in a connectionist network.

90 CHAPTER 2

Connectionist representations

Early connectionist models, and also many current ones, adopt
what is called a “localist” form of representation (more recently,
these have been called “structured representations”). The word rec-
ognition model and the TRACE model are examples of models
which use this type of representation.

Localist representations are similar in some ways to traditional
symbolic representations. Each concept is represented by a single
node, which is atomic (that is, it cannot be decomposed into smaller
representations). The node’s semantics are assigned by the modeler
and are reflected in the way the node is connected to other nodes.
We can think of such nodes as hypothesis detectors. Each node’s
activation strength can be taken as an indicator of the strength of
the concept being represented.

The advantage of localist representations are that they provide a
straightforward mechanism for capturing the possibility that a sys-
tem may be able to simultaneously entertain multiple propositions,
each with different strength, and that the process of resolving
uncertainty may be thought of as a constraint satisfaction problem
in which many different pieces of information interact. Localist rep-
resentations are also useful when the modeler has a priori knowl-
edge about a system and wishes to design the model to reflect that
knowledge in a straightforward way. Finally, the one-node/one-
concept principle makes it relatively easy to analyze the behavior of
models which employ localist representations.

Localist representations also have drawbacks, and these have
led many modelers to explore an alternative called “distributed rep-
resentations.” In a distributed representation, a common pattern of
units is involved in representing many different concepts. Which
concept is currently active depends on the global pattern of activity
across the ensemble of units.

3. If this account is correct, it predicts that technically ungrammatical non-
word sequences might still be perceived better than other grammatical non-
word sequences, just in case the ungrammatical non-words happened to
almost resemble many real words. This prediction was subsequently verified
experimentally with human listeners (McClelland & Elman, 1986).

Why connectionism? 91

Figure 2.16 gives an example of distributed representations. The
same group of units is shown in Figure 2.16a and Figure 2.16b, but
the units have different activations. Concepts are associated, not
with individual units, but instead with the global pattern of activa-
tions across the entire ensemble. Thus, in order to know which con-
cept is being considered at a point in time, one needs to look across
the entire pattern of activation (since any single unit might have the
same activation value when it participates in different patterns).
The information needed to decide which concept is being repre-
sented is distributed across multiple units.

i« ”

(a) (o)

FIGURE 2.16 Examples of distributed representations. Both (a) and (b)
illustrate different patterns of activation of the same set of four units.
Activation values for individual units are shown as numbers above
each unit. Note that the second unit has the same activation value in
both representations; in order to know which concept is represented,
one has to look at the entire set of nodes.

This style of representation seems to be more consistent with
the brain stores information than localist representations (e.g.,
Lashley, 1950). A note of caution, however: Most modelers who
study higher-level cognitive processes tend to view the nodes in
their models as equivalent not to single neurons but to larger popu-
lations of cells. The nodes in these models are functional units rather
than anatomical units. So it is not clear how heavily to weigh what
seems to be the somewhat greater biological plausibility of distrib-
uted representations.

The real advantages have to do with representational capacity.
Localist representations impose a rigid framework on a model’s
conceptual contents. Although graded activations in a localist
model allow one to capture probabilistic or partial knowledge, there
is still a fixed and discrete inventory of concepts. Distributed repre-

92 CHAPTER 2

sentations tend to be richer and more flexible. This can be seen by
spatial comparison of the two types of representation.

We pointed out earlier that patterns of activation can be thought
of as vectors, in which the activation of each unit is the value of an
element in the vector, and the entire vector represents the values of
all the units in the pattern. As vectors, these activation patterns can
also be represented geometrically. Each unit corresponds to a
dimension (in “activation space”), and the unit’s activation indi-
cates where along that dimension the vector is located. Thus if we
had activation patterns involving three units, we could represent
the patterns in a three-dimensional space, using the x dimension to
represent the values of the first hidden unit, the y dimension to rep-
resent the second, and the z dimension to represent the third.

If we use these three units in a localist fashion, then we are per-
mitted exactly three distinct vectors, corresponding to the activa-
tion patterns 100, 610, 001 . The spatial representation of these vectors
is shown in Figure 2.17a.

[010)

[001]

[100]
(@) (b}

FIGURE 2.17 Localist representations in (a) pick out just three distinct
vectors. Distributed representations in (b) fill the entire space occupied
by the cube.

On the other hand, if we use a distributed representation, then
our activation patterns may involve any combination of values on
all the units. The activation pattern 0.5,0.5,0.5 picks out a point in
the center of the cube. This means we have at our disposal the entire
volume of space represented in the cube shown in Figure 2.17b. Prac-

Why connectionism? 93

tically speaking, of course, there are limitations on just how pre-
cisely one might be able to distinguish vectors which are very close,
but it is still clear that given the same number of units, the concep-
tual space is much larger for distributed representations than for
localist representations.

There are several other outcomes from having available the
entire activation space for representation, and these interact with
another important observation. When we spoke earlier of the XOR
problem, we said that networks operate on the principle that “simi-
lar inputs yield similar outputs.” We defined similarity in terms of
the spatial proximity of activation patterns and said that activation
patterns—and the concepts they represent—are similar to the
degree they are close in activation space. Vectors which are close,
by Euclidean distance, are similar. Patterns which are distant in
space are dissimilar.

Consider the implications of this for localist representations.
The vectors in Figure 2.17a are all equidistant (they are also orthog-
onal to one another). There may or may not be relevant similarity
relationships between the concepts they represent, but there is no
way to capture this in concepts’ representations. On the other hand,
because the entire activation space is available with the distributed
representations in Figure 2.17b, one can envision a range of possi-
bilities. Things which are close in conceptual space can be repre-
sented by activation patterns which are close in activation space;
the degree of dissimilarity can be measured by their distance. The
space may even be organized hierarchically. Let us give a concrete
example of this, from Elman (1990).

In this task, a simple recurrent network was trained to predict
successive words in sentences. Words were input one at a time, and
the network’s output was the prediction of the next word. After the
network made its prediction, backprop learning was used to adjust
the weights and then the next word was input. At the end of each
sentence the first word from the next sentence was presented. This
process continued over many thousands of sentences.

The words themselves were represented in a localist fashion.
That is, a word such as “cat” appeared as a 31-bit vector with one
bit on (1) and the remaining bits set to 0. Because of the localist rep-

94 CHAPTER 2

resentations, words were equidistant in the activation space and
there was therefore no similarity between them. This scheme was
adopted quite deliberately, because it meant that the network was
deprived of any clues regarding the grammatical category or mean-
ing of the words which it might use in making predictions. Instead,
the network had to rely entirely on the distributional statistics of
the stimuli to carry out the task. (In much the same way, the acous-
tic form of a morpheme bears no intrinsic relationship to its mean-
ing and one might imagine this as similar to the situation of the
very young language learner, who has no prior knowledge of which
meanings are associated with which words).

The network eventually learned to carry out the task, although
not precisely as trained. For example, given the sequence of vectors
corresponding to the words “the girl ate the...,” the network acti-
vated all the output units which corresponded to the various words
representing edible things, rather than predicting exactly the spe-
cific word which followed.

One might infer from this result that the network somehow
developed the notion “edible.” This category, and others such as
noun, verb, etc., were not represented in either the input or output
representations, so the only place remaining to account for the
behavior would be in the hidden unit activations. The hidden units
define a very high dimensional space (there were 150 hidden units,
which map a 150-dimensional hypercube), and one might expect
that the network would learn to represent words which “behave” in
similar ways (i.e., have similar distributional properties) with vec-
tors which are close in this internal representation space. Ideally,
one would like to be able to visualize this space directly. But since
the space is so highly dimensional, indirect techniques must be
used. One of these involves forming a hierarchical clustering tree of
the words” hidden unit activation patterns.

This is a fairly simple process. It involves first capturing the
hidden unit activation pattern corresponding to each word, and
then measuring the distance between each pattern and every other
pattern. These inter-pattern distances are nothing more than the
Euclidean distances between vectors in activation space we spoke
of earlier, and we can use them to form a hierarchical clustering

Why connectionism? 95

tree, placing similar patterns close and low on the tree, and more
distant groups on different branches. Figure 2.18 shows the tree
corresponding to hierarchical clustering of the hidden unit activa-
tions obtained from the sentence prediction task.

We see that the network has learned that some inputs have very
different distributional characteristics than others, and forms hid-
den unit representations which places these two groups in different
areas of activation space. These groups correspond to what we
would call nouns and verbs. In addition to grammatical differences,
the network uses the spatial organization to capture semantic dif-
ferences (e.g., humans vs. animals). The organization is hierarchical
as well. “Dragon” occurs as a pattern in activation space which is in
the region corresponding to the category animals, and also in the
larger region shared by animates, and finally in the area reserved
for nouns.

This spatial framework allows some categories to be distinct
and disjoint, but also makes it possible to have representations
which lie between category boundaries. An example of this occurs
in a phenomenon called sound symbolism. This refers to the com-
mon occurrence in which sequences of sounds have loose associa-
tions with meanings. In English, for instance, words which contain
a final “-rl” (“curl,” “unfurl,” “burl,” “whirl,” “twirl,” etc.) often
evoke the image of circularity. The association is psychologically
real in the sense that given a nonce word such as “flurl,” speakers
will generate definitions involving some circular aspect. These
associations seem to lie somewhere between the level of sound
(phonemes which by definition carry no meaning) and systematic
meaning (morphemes). This is the sort of phenomenon which might
be exploited by distributed representations.

Another aspect of distributed representations which makes
them useful is their tendency to be context-sensitive. In this way
they differ fundamentally from traditional symbolic representa-
tions, which are abstract and context-insensitive.

Context-sensitivity may be encoded by the precise location of a
representation in activation space. Consider again the sentence pre-
diction task described above. If one compares the position of the
vector for a word across the many instances it occurs, one notices

96 CHAPTER 2

l__‘——smell
move

|—see think
xist D.0.-ABS.
o VERBS
real
mash D.O.-OPT. E—

ike
{——:hase D.0.-0BLIG.
at

B sy
at
og ANIMALS

onster

ion ANIMATES
ragon

oman
irl
agn HUMAN
oy

andwich

ockie FOOD INANIMATES

bread

—ES:SLZ BREAKABLES

2.0 1.5 1.0 0.0 -0.5

NOUNS

FIGURE 2.18 Hierarchical clustering of hidden unit activation patterns
from the sentence-prediction task (Elman, 1990). The network learns
distributed representations for each word which reflects its similarity
to other words. Words and groups of words which are similar are close
in activation space, and close in position in the tree.

that the location varies. Thus there will be many different vectors
corresponding (for example) to the word “dragon”; the tree shown
in Figure 2.18 was actually formed using vectors which averaged
across context. (The reason why the hidden unit representations
varies is because the internal representations are created by activa-
tion both from the word input itself, which is invariant, and the
prior internal state encoded in the context units, which is variable.)

Why connectionism? 97

This proliferation of multiple tokens for different types might
seem to be problematic. Given a specific activation pattern, how do
we know which type it belongs to? As it turns out, the answer is
easy, and it’s the same one used to distinguish categories such as
nouns from verbs: Tokens of the same type are all spatially proxi-
mal, and closer to each other than to tokens of any other type. The
fact that they inhabit a bounded region of space is what tells us they
are all the same abstract word.

There’s a bonus as well. The spatial distribution of tokens turns
out to be non-random. Instances of “dragon” when it appears as
subject in a sentence are located in a different region of the
“dragon” space than “dragon”-as-object. The relative positions of
these two subclasses turns out to be identical across nouns! This
means that the tokenization process is actually encoding grammati-
cally important information, in a systematic way. The internal rep-
resentation of a word thus reflects not only its core identity, but
provides a grammatically interpretable context-sensitive shading.

Connectionist processing: The importance of
nonlinearity

Earlier we remarked on the importance of the nonlinear activation
function in neural networks. We return to this issue because we
view it as one of the properties which gives connectionist models
great computational power.

Essentially, the fact that nodes have nonlinear responses to their
inputs means that there are some conditions under which they
respond in a graded and continuous manner, and other conditions
where their response is abrupt, discrete, and all-or-nothing. It sim-
ply depends which region of the node’s activation function is being
used.

The importance of this characteristic to development should be
apparent. It has long been observed that there are periods during
development where behavior changes slowly and progress is incre-
mental. Such periods may be succeeded by spurts of activity in
which change is dramatic and rapid. This phenomenon is also
sometimes linked to the notion of “readiness,” because during the

98 CHAPTER 2

time of rapid change it appears that the developing organism has a
heightened sensitivity to inputs which previously elicited no appar-
ent response. The organism is said to be ready to change in a way it
was not before.

A reasonable interpretation of this developmental phenomenon
might be that the organism has undergone a drastic internal reorga-
nization, or that maturational factors have changed the organism in
some fundamental way. Thus, dramatic—or nonlinear—changes in
behavior are seen as diagnostic of dramatic, nonlinear changes in
internal structure.

This interpretation is not the only one possible, and in Chapter
3 we discuss several connectionist simulations which exploit the
nonlinearities in nodes” activation functions; in Chapter 4 we go
into this matter of the shape of change in greater detail. The lesson
will be that very small changes in internal structure may produce
very big changes in observed behavior. Put another way, the same
mechanism may produce discontinuous behavior over time without
requiring drastic internal reorganization.

We have also briefly discussed another consequence of the non-
linearity, which we repeat here and which will figure in our account
of the phenomenon we call “the importance of starting small,” dis-
cussed in Chapter 6. Recall from Equation 2.6 that one of the terms
which is used in computing weight changes during learning is the
derivative of the activation function. This term, which measures the
slope of the activation curve, modulates how much of the error sig-
nal is actually used to change the weights. Since the activation func-
tion is steepest in its midrange (see Figure 2.2), the effect of an error
is greatest at this point. Because network weights are usually initial-
ized with small random values with mean of 0.0, this means that
when networks start off life they typically have net inputs close to
0.0, which is exactly the value that generates midrange outputs. The
result, as we explained earlier, is that networks are more sensitive to
error during early training. As training progresses there is a ten-
dency for node activations to be pushed to their extremes, and this
has the effect of slowing down learning. Whether this is good or
bad, of course, depends on whether learning is successful' In any
event, it provides a natural mechanism by which learning can be

Why connectionism? 99

self-terminated. This too is a phenomenon which has been observed
in development.

Final words: What connectionism is, and is not

Before we conclude this chapter, there are several issues outstand-
ing which we wish to address. Several of these issues represent
what we feel are misunderstandings abouf the nature of connection-
ist models. We will return to some of these points in later chapters,
but feel it is useful to identify them clearly at the outset.

Just how rasa is the tabula, anyway?

There is a widespread belief that connectionist models (and model-
ers) are committed to an extreme form of empiricism; and that any
form of innate knowledge is to be avoided like the plague. Since a
basic thesis of this book is that connectionist models provide a rich
framework and a new way to think about ways that things can be
innate, we obviously do not subscribe to this point of view.

To be sure, it is not difficult to understand where the belief
comes from. One of the exciting lessons from the connectionist
work is that relatively simple learning algorithms are capable of
learning complex things. Some of the results have demonstrated
very dramatically, as pointed out before, that considerably more
structure is latent in the environment than one might have guessed.
In the past, a common argument in favor of innate knowledge has
been the claim that the input to a learner is too impoverished—or
the learning algorithms too weak—for the appropriate generaliza-
tions to be induced (e.g., Gold, 1967). So one very useful function
which has been served by the demonstration that learning may be
possible in cases where it was thought not to be is to encourage a bit
more caution in resorting to claims of poverty of the stimulus.

It is also true that our species’ ability (and need) to learn seems
to be unparalleled in the animal kingdom. As Gould (1977) and oth-
ers have pointed out, one of the most striking characteristics of

100 CHAPTER 2

human evolution is the dramatic increase in time spent during
development. This prolonged period of dependence might be con-
sidered to be maladaptive, except that it increases the opportunity
for learning and socialization. The connectionist emphasis on learn-
ing is thus highly relevant to understanding a major characteristic
of our species.

Of course, the fact that something can be learned is not a suffi-
cient demonstration that it is. The learning that takes place in a net-
work simulation might in biological organisms occur through
evolutionary mechanisms. And to the proof of the universal
approximator capabilities of networks (Hornik, Stinchcombe, &
White, 1989) must be counterposed another result, that when archi-
tecture is unconstrained, many classes of problems are NP-com-
plete (i.e., for practical purpeses, too hard to learn; Judd, 1990). So
there are good reasons to believe that some kinds of prior con-
straints are necessary.

In fact, all connectionist models necessarily make some assump-
tions which must be regarded as constituting innate constraints.
The way in which stimuli are represented, the parameters associ-
ated with learning, the architecture of the network, and the very
task to be learned all provide the network with an entry point to
learning. But there are other, even more interesting ways in which
connectionist models allow us to take advantage of prior con-
straints and to understand how maturational factors may interact
with learning. The net effect is to make possible highly complex
interactions with the environment. To be innate need not mean to be
inflexible or nonadaptive. A major goal of this book will be to
explore and exploit this perspective.

Modularity

Modularity tends to travel with innateness on the Big Issues circuit.
In fact, these issues are logically separable and it is unfortunate they
are so often confounded with one another. In much the same way
that connectionist models have been thought to deny any role for
innateness, they are often thought to be anti-modular.

Why connectionism? 101

It is true that many models have worked from an assumption of
minimal structure. This is not an unreasonable initial working
hypothesis. Furthermore, many of the early models (such as the
word-recognition model) focussed on phenomena in which interac-
tion between various knowledge sources played an important role.
The sort of strict encapsulation envisioned by Fodor (1983) seemed
undesirable.

But nothing intrinsic to the connectionist frame precludes mod-
ularity, and we have already made the point that some degree of
organization and modular structure appears necessary if models are
to be scaled up. Work by Jacobs, Nowlan, Jordan, and others shows
that connectionists take the challenge of modularity very seriously.

The real questions seem to us to be, first, to what extent is the
modular structure pre-existing as opposed to emergent; and, sec-
ond, what are the functional contents of the modules?

Answers to these questions will vary, depending on the mod-
ules involved. The retina is a module whose structure is highly pre-
determined, and whose functional role is tightly coupled to a spe-
cific domain. Visual and auditory cortex, on the other hand, are
modules which are partially pre-determined but in a highly indirect
way. We know from results involving natural and induced patholo-
gies (e.g., Hubel & Wiesel, 1963, 1965, 1970; Neville, 1991; Sur, Pal-
las, & Roe, 1990) that both the structure and content of these areas is
highly dependent on appropriate input during development. To us
the interesting question is not whether or not the brain is modular
(it clearly is), but how and why it gets to be that way. There is a
huge difference between starting modular and becoming modular.
One of the important contributions of connectionist models has
been in suggesting answers to these questions (e.g., Linsker, 1986,
1990; Miller, Keller, & Stryker, 1989; O'Reilly & Johnson, 1994). This
will be an issue which will occupy much of our attention in the
remainder of this book.

102 CHAPTER 2

Do connectionist models have rules?

It is sometimes claimed that connectionist models show that sys-
tems are capable of productive and systematic behavior in the
absence of rules. We actually do not believe this is true—but we do
have great sympathy for what often underlies the claim.

To say that a network does not have rules is factually incorrect,
since networks are function approximators and functions are noth-
ing if not rules. So arguments about whether or not networks have
rules really do not make much sense.

Others have tried to distinguish between behavior which is
characterized by rules, and behavior which is governed by rules. Pre-
sumably, in the first case, the behavior only accidentally conforms
to a rule, whereas in the latter case the rule has causal effect.
Clearly, the behavior of a network is causally connected with its
topology and connection weights, so ultimately this also is not an
interesting distinction.

What we take as a more interesting question is, What do the net-
work’s rules look like? Are they merely notational variants of the rules
one sees in more traditional approaches such as production systems
or linguistic analyses? Or do they make use of primitives (represen-
tations and operations) which have significantly different proper-
ties than traditional symbolic systems, and which might capture
more accurately—and with more explanatory power—the behavior
of learning in humans?

It is important here to distinguish between theoretical behavior,
in the limit, and behavior in practice, operating in the real world
with real-time constraints. In principle, connectionist networks and
traditional symbolic systems may be interconvertible. This is one
reading of the proof of networks as universal approximators. But
systems which are instantiated in the real world with space and
time constraints have different properties than their idealized coun-
terparts. The idealized digital computer may be a Universal Turing
Machine, but no such machine exists in the real world, and no real
neural network is a universal function approximator. So in reality
we are dealing with systems which may have very different proper-
ties when they are placed in a real world context. In practice, certain

Why connectionism? 103

sorts of generalizations and behaviors may be more readily cap-
tured in one system than in the other.

For instance, we know that it is possible to build a connectionist
network which implements a LISP-style rule system (Touretzky &
Hinton, 1985). But when it comes down to it, it is probably easier to
write LISP programs in LISP. David Marr (1982) gives the example
of computation with Arabic vs. Roman numerals. It is relatively
easy to do numeric computation with Arabic numerals, but harder
(especially multiplication) with the Roman system. In a similar
manner, connectionist networks are not particularly well-suited to
implementing truly recursive functions, nor to doing predicate cal-
culus, nor to doing many basic mathematical operations. We are
perplexed when people try to teach networks such things. They can
be done, but at some cost and no gain.

On the other hand, connectionist networks do provide a natural
formalism for carrying out many of the operations which are char-
acteristic of biological systems. The criticism that connectionist
models cannot implement strict recursion nor support syntactically
composed representations (e.g., Fodor & Pylyshyn, 1988) are well-
grounded, but the conclusion—that therefore connectionist net-
works are insufficient to capture the essence of human cognition—
seems to us to reflect a profound misunderstanding about what
human cognition is like. We believe that human cognition is charac-
terized by interactive compositionality (or in van Gelder’s terms,
“functional compositionality,” van Gelder, 1990) and that it
requires exactly the kind of interactive and graded representations,
and nonlinear operations which are the natural currency of connec-
tionist models. So we believe that connectionist models do indeed
implement rules. We just think those rules look very different than
traditional symbolic ones.

Is connectionist neo-Behaviorism?

One concern that has been expressed is that connectionism is sim-
ply behaviorism dressed up in modern clothing. There is some
irony in this worry, since Donald Hebb, whose insights have been a

104 CHAPTER 2

beacon for modern connectionism, was in profound disagreement
with the behaviorist approach and saw connectionism (the term he
used) as being distinctly anti-behaviorist.

Connectionism is apparently behaviorist insofar as connection-
ist models often involve inputs and outputs which play the role of
Stimulus and Response. Behaviorists, however, eschewed attempts
to speculate about the agency which mediated the S-R pairing.
Behaviorism was both anti-physiological and anti-mentalist. Behav-
iorists were hostile to explanations which invoked unseen mecha-
nisms and despaired of ever being able to relate mental function to
brain function.

Connectionism, on the other hand, focuses precisely on the
mechanisms which mediate behavior. Hidden units, for instance,
play the role which behaviorists were unwilling to grant the brain.
They allow models to form internal representations whose form
and function may not be directly inferable from either input nor
output. The resulting representations are abstract. Recurrent con-
nections further enrich the system; they make it possible for the sys-
tem itself to be both an input and an output of processing, and to
generate activity which is not environmentally induced. Such
endogenous activity is an essential component of thought.

The importance of biology

We end with this issue because it is one which lies at the heart of the
this book. The question is how seriously one should take biological
constraints.

First, we wish to make clear that we think that the connectionist
paradigm is interesting in its own right, and that there are valid rea-
sons to study connectionist models regardless of whatever biologi-
cal plausibility they might or might not have. There are many
routes to intelligent behavior. We see no reason to focus exclusively
on organically-based intelligence and neglect (for example) silicon-
based intelligence. Artificial intelligence may help us better under-
stand natural intelligence. But even if it doesn’t, artificial systems
are fascinating on their own terms.

Why connectionism? 105

Having said this, we want to make clear our own bias. We do
believe that connectionist models resemble biological systems in
important ways. We believe that connectionist models will be
improved by taking seriously what is known about how computa-
tion is carried out in neural systems. We also believe that connec-
tionist models can help clarify and bring insight into why neural
systems work as they do.

Certainly there is a large gap between models and reality. For
instance, there is no known evidence of any biological system
which implements backpropagation learning. (Hebbian learning, on
the other hand, seems much more plausible.) Sometimes this gap is
unavoidable; sometimes it is even desirable. Ten years ago, for
instance, there was no biological evidence for the existence of multi-
plicative synapses of the sort described in Feldman and Ballard
(1982) and Rumelhart, Hinton, and McClelland (1986). Nonetheless,
such higher-order units (often called “sigma-pi units” because they
sum products of inputs) have been shown to be very useful in sim-
plifying circuitry (e.g., Durbin & Rumelhart, 1989; Giles, Griffin, &
Maxwell, 1988; Mel, 1990; Poggio & Girosi, 1990) and in principle
there seemed to be no reason why synapses with these properties
might not exist. And indeed, such synapses have recently been dis-
covered in the brain. In retrospect, it would have been a mistake to
have rejected out of hand models which used sigma-pi units; there
is obviously a great deal which remains unknown about nervous
systems and one would not want modeling to always remain sev-
eral paces behind the current state of the science.

There is another reason for being willing to tolerate a gap
between the model and the meat. It is often difficult to know what
functional role is served by specific neural mechanisms. As David
Marr has pointed out, “trying to understand perception by studying
only neurons is like trying to understand bird flight by studying
only feathers: It cannot be done” (Marr, 1982). Models permit a level
of analysis in which the emergent properties of a complex system
may be revealed. Exactly which specific details of implementation
are significant and which are not cannot always be predicted in
advance. One might believe that some neural systems do gradient
descent learning in a way which is functionally similar to backprop-

106 CHAPTER 2

agation, even if one does not believe that backpropagation is the
exact mechanism.

At the same time, we take seriously the goal of trying to build
models which are informed by biological research. Nature’s solu-
tion may not be the only one (and as Stephen Jay Gould points out,
if it were possible to rewind the evolutionary tape and start over,
even Nature would be likely to find a different solution on every
rerun), but it is certainly an interesting one. And it works! So on
pragmatic grounds alone, there are compelling reasons to try to
reverse engineer nature.

More than this, however, we are interested in understanding
nature’s solution. So it makes no sense to ignore nature’s lessons.
We are willing to tolerate a reasonable gap between our models and
the reality, particularly since our own interests veer toward high-
level phenomena whose neural substrates are less well understood.
But we take as our goal the development of models which are
informed by the biology and at least roughly consistent with it.

Our view of what this entails is perhaps somewhat broader than
might be first apparent. For us, a biological perspective involves not
only the narrower view which focuses on developmental neuro-
science in the individual, but also the broader perspective which
views the individual as embedded in an evolutionary matrix.
Marr’s warning about studying bird flight is appropriate here
again. Trying to understand individual traits without regard for the
way they interact in the whole individual is a doomed enterprise;
and so is trying to understand whole individuals without regard for
the way they interact in societies and evolve over time. We are very
interested in ways that things can be innate, and we do not see how
this can be understood unless one takes an evolutionary perspec-
tive.

Of course, this broadens our brief considerably and we run the
risk of over-reaching what may be reasonably grasped. But we
think the risk is worth taking, and recent work which attempts to
bring together connectionist models, the study of artificial life, and
the use of evolutionary mechanisms represents exactly the kind of
broad biological perspective we have in mind. Let us now elaborate
that view in more detail across the following chapters.

