Seeing: What Is 1t?

Retinal image.of the. scene
‘facused upside-down.and
{eft-right reversed onto the
light-sensiliva retina of ihie'aye

Observed scehe: a photograph of John Lennon

1.1 An “inner Screen” theory of seeing o
One-theory of this kind proposes that ;there.is_a-set_of'b_rai'n cells whose level of"acli'\'/ity--represents the brightness. of pojnts
in the scene. This theory therefore‘suggests that seeing is akin to photography. Note ihat the image of Lennon is inverted in
thé eye, due fo the.optics of the eye, but it is.shown Upright in thie: brain to match our perceptions of the world—see page 8,
Lennon photograph courtesy Associated Newspapers Archive.



Chapter 1

A Jhiargoes on inside our heads when we see?
¥ Most people take'seeing so.much for granted
that few-will evér-have considered this question
seriously: Burif pressed-to speculate,.the ordinary
person who:is not an expert on the subject might
suggest:
Could perhaps there be arf “inner screen” of
gome sott in-.our heads, rather like a ¢inema
screen except that it is - made out-of brain tis-
sue? The eyes transmit an image of the out-
side world onto this screen, and this is the. im-
age of which we aré conscious?

The idea that se¢ing is akin to-photography, illus-
trated in 1.1, is commonplace, but it has funda-
mental shortcomings. We discuss- them in this
opening chapter and-we introduce a very different
concept about secing.

"The photographic metaphor for seeing has its
foundation in the cbservation that our-eyes are in
fnany respects like camerds.. Both cameéra and eye
have a lens; and where the camera has a light-sen-
sitive film or an airay of ligh t-sensitive electronic
components, the eye hasa light-sensitive retina,
1.2, a network of tiny light-.s'eﬁ_si;iire receptors’
arranged in a layer roward the back of the eyeball
(Latin rete—net). The job of the lens is o, focus an
image of the outside wortd—the -retinal image—
on 1 these receprors. This.image stimulates them
‘so that edch receptor éncodes the intensity of the

1.2 The receptor mozaic

Microphetograph of cells in the center of the human
rétina: (the fovéa) that deais with straight ahiead vision.
Magnification’ roughly x 1200. Courteésy Webvision {hitp://
webvision.med.utah.edu/sretina.htmi¥central).

4.3 Pyramidal-brain cell

Microscopic enlargement of a ‘slice:of fat brain stained 'to
show a large neuron called a- pyramidal ceif. The long
thick fiber is a-dendrite that collects messages from other

celis. The axon'is the output fiber. (Note Some other types

of neurons have thicker axons.) Brain neurons are highly
interconnected: it has been estimated that there are more
connections:in the human brain than there are stars in the
Milky Way. Courtesy P. Redgrave.

small point of lightin-the image that lands on
it. Messages about thesé point by point inrensi-
ties'are conveyed from the eye ;ilbng fibers in: the
optic nerve to-the brain. The brain is composed
'of.mi'llion_s of tiny coniponehts, brain cells called
neurons, 1.3.

The core ided.of the “inner screen” cheory illus-
trated in 1.1 is tharcertain brain cells specialize in
vision and aré arranged in the form of a sheec—the.
“inner screen.” Each cell in-the screen can ar any
moment be cither active, inactive, or somewhere
in between, 1.4. Ifa cell is very active, it is signal-
ing the presence of a bright spot at that parricular
poinc on the “inner sereen”™—and hence at the
associated point in the outside world. Equally, if
a cell is only moderately active, it is signaling-an
intermediate shade of gray. Completely inactive
cells sighal black spots, Cells in the “inner screen”
as a wholé take.on a pattern of activity whose
overalt shape mirrors the shape of the retinal image
received by the-eye. For example, if a p'hotograph is
being observed, as in' 1.1, then the pattern of activ- .
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“inner screen” theory of secing is easy to
tand and is intuitively ap'pca!ihg Afrer all,
sual experiences do'seem to “macch” the our-
rld: s6 it is natural to suppose that there are
isms for vision in che brain which provide
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Seeing and Scene Representations
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Seeing: What (s it?

representationas the basis:of se¢ing. In rhis respect

ivis like alniost all other théories of seeing, b to

describe it in this way requires some explanation.
In this book we uée-t_h_c term representation

for anything chat:stands for:something other than

example, the word “chair” statids for-a parricular
kind of sitting suppore—the word is not the sup-
port itself. Many other kinds of representations ex-
ist;'of course, apart from words. A red traffic light
stands for the command “Stop!”, the Stars and
Seripes stands for the Unired States of America;
and so on. A moment’s rcﬂccnon shaws that there
must be representations inside our heads which are.
unlike the things they represent. The world is “out
there,” whereas the perceptual world is the result of
processes going on inside the:pink blancmange-like
mass of brain cells that is our brain. It isan in-
escapable conclusion that there must be a repre-
sentation of the outside world in the brain. This
rcpre;(_:_n_tation' can be said ta serveas a d_escn})_tipn_
that-eni¢odes the various aspects:of the world of
which sight makes us aware.

In fact, when we began by asking “What.goes
on inside our heads when we see?” we could as well
have stated this quéstion-as: “When we see, what
is the nature of the 'represent'ltidn insideour heads
that stands for thmgs in the outside world?” The
answer given by the “inner screen” theary is that
each brain cell.in the hypotherical screen is describ-
ing (représenting) the brightness of one patticular
spot in the world iit terms of an: activity code, 1.4.
The code is 2 simple one: the more active the cell,
the lighter or more brightly illuminated the point
in.the'warld. '

It can come as something of a shock to realize
_th_at'_somehow the whole of our perceived visual
world is tucked away in ouf skulls as an inner rep-
resentation which starids for the outside woirld. It is

difficult and unnatural to disentangle the “percep-

tion of a scene” from the “scene’itself.” Neverthe-
less, ehey must be clearly distinguished if seeing is
to be understood. When the difference between a

perception and the thing perceived is fully grasped,

the conclusion that secing must involve a represen-
tation of the viewed scene sitting somewhere inside
our heads becomes easier to accept. Moreover, the

problem of seeing can be clearly stated: what is the

‘narure of the brain’s representation of the visual



Optic radiations

Chapter 1

Lateral geniculate nucleus

1.5 Diagrammatic section through the head
Thiis shows. principal- features of the major visual pathway

that links the eyes tothe.cortex.

world, and hoW‘:;i's':'_if.; obtairiéd? It is this problem
which provides the subject of chis boak:

Percjé__p'ti;'m ousness, and Brain Cells

{ _gl experiences and
activity in certaifi ‘brain-eells, That is, activity in
certain cells is __s_om_e_h ;g @:pmpa;;icd'-by-_consciou_s.
experience. Proposing'this kind-of paratlelism

Shlp between con

betwéen brain-cell activity- 'md visual experience is
characteusnc of many. thcoues of perccptual brain
mechanisms. Burt is there more. to it than this? Can.

the richness of visual experience really be identi-

fied with activity in a few million, or even.a few

trillion, brain cells? Are brain cells the righr kind of
entities to provide conscious perceptual experience?
We return to these questionsin Ch 22, For the

-moment, we simply note that.most-vision scientists

‘get on with the job. of studying seeing without

concerning themselves much with the issue of

Cons ClO_lIb_l’lC_SS.

Pictures in the Brain

You might reasonably ask at this point: does:neu-
roscience have anything to say directly about the
“ingerscreen” theory? Is there any evidence from
studies of the brain as to: whether such a séréen or
anything like it exists®

Theé major visual pathway carrying the messages
from. the eyes to the brain is shown in broad out-
line in 1.5. Fuller details are stiown in 1.6 in which
the eyes are shown. inspecting a person, and the
locations of the various parts-of this scene “in” the-
visual system are shown with the help of numbers.

The first thing to notice is that the eyes do not
receive identical imhages. The left eye sees rather
more of the'scene to the left of the central line of
sight (segions. 1 and 2), and vice versa for the right

eye _(r_eg'ions'-_S and 9). There are other differences

between the left-and right eyes’ images in the case
of 3D scenes: these are desciibed fully in Ch 18.
Next, notice the optic nerves leaving the eyes.
The fibers'within each optic nerve are the axons
of certairi rédinal-cells, and they. carry miessages
from the retina to the brain. The left and right
optic nerves meet at the optic chiasm, 1.6 and 9.9,
where the optic nerve bundie from €ach ege splits
in two. Half of the fibers.from each eye cross to the
opposite side of the brain, whereas the other half
stay on the same side of the brain throughouc.
“The net result of this partial crossing-over of
fibers (tr:chmcally called partial decussation) is
that messages dealing with any given region of the.
field of view arrive at a common destination in the
cortex, re_gardi_esa of which eye they come from. In
other words, left- and right-eye views of any given
fearute of a scene are analyzed in the same physi-
cal location in the sériate cortex. This is the major
receiving area-in the cortex for ‘messages sent alon g
nerve fibers in the optic nérves. '
Fibers from the optic chiasm enter the left and
right lateral. gemculate nuclei. These are the first
re]ay stations” of the fibers from the eyes.on their
way to the striate cortex. Thar s, axans from the
retina terminate here on the dendrites of new neu-
rons, and it is the axons of the latzer cells thar then.
proceed to the cortex. A good deal of mystery still




rrounds the question of what cells in the lateral
geniculate nuclei do. They receive inputs not.only
v the eyes but also from other sense organs, so
me think that they might be involved in filcer-
g messages from the-eyes-according to what is
appéning in-other senscs. The lateral geniculate
clei also receive a lot of fibers sending messages
. the cortex. Hence there is an'intriguing
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Right eye

Optic nerve

- Opfic chiasm

Optic tract

& Schematic ilfustration of two important visual pathways
e pathivay goes from the eyes to the striate cortex and.one

from the eyes to-each superior colliculus. The distortion in

he:brain mapping. m the striate corfex reflects the emphasis given to analysing the central region of the refinal image; so
ich so that the finy representatiori of the chiid’s hand-can hardly be seen in this figure. Sée 1.7 for details.

-two-way up-down traffic going-on in this visual

pathway and we discuss its possible functions in
later chaprers. _ _

Before we go on to discuss the way fiber ter-
minations. a_re.:i_aid out in the striate cortex, note
thar the optic nerves provide visual informartion to
vwo other structures shown in 1,6—the left and
right halves of the superior collicuelus. This isa
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Retinal image.in right eye

Scéne

Hyperfields in
right image

Striafe.cortex of left
cerebral hemisphere

1.7 Mapping of the refinal image in the striate cortex (schematic)

Turn the-book upside-down for a better.appreciation of the distortion.of the.scené‘in cartex. The hyperfields are regions of
the retinal image that pro;ecl to hypothetical structures called hypercolumns (denoted as graph—paper squares in the.part
of the striate cortex map shown here, which dérives fram the left hand sides of the left and right retinal images; more details
v Chs 9.and10). Hyperf;elds are much smaller i in-central than in peripheral vision; so relatively more cells are. devoted to
central vision. Hypérfields have receptive fields.in. both | images but here two are:shown for the nght image only.

brain strucriste which-lies underneath the corsex,
1.5, s0 it is'said o be sub-cortical. Trs function is
different from that performed by regions of the
cortex devoted to vision. The weighr of eviderice
at preseht.suggests that the superior-colliculus

is -'cdhzié'rn"e&'With"guidiﬂg' visual attention. For.
example, if-an. object suddenly appeats in the field
of view, mechamsms within the superio; olliculus
detecr its.présence, watk out its locarion, aad thén
guide eye moventierits:so' thar the:nevel object can
be observed directly.

[t 35 important to realize thav other visual parh-
ways exist apare from the two main ones shown in
1.6. In fact, in morikeys and'most probably also
in man, optic nerve fibers dlrecrly feed-ar least
six different brain sites, This is testimony to the
enormously important role of visioh for ourselves
aiid similar species: Indeed, ithas been estiniated
thar rouglily 60% of the brain is involved in vision
in one way or another. _

Returning now to the issue of picturés-in-the-
braii, the striking thirig i 1.6 is the otderly; albeit
curious, layour of fiber terminations in the striare

COrteX.,

First, niove thit a face is'shown mapped out on
the cortical surface (cortical means “of the cortex™).

‘This is the face that the-eyes are inspecting,

Sécond, the representation is upside-down.

‘e retindl images {not shown in 1:6) are also
upside-down due to the way the optics of the eyes
work, 1 1. Norice that the sketch of the “inner
screen” in 1.1 showed a right-way-up imiage; so ic
is differen i thar: respect.from the mapping found

in the striate cortex.
Third, the mapping is such thac the representa-
tion of the scene is cut right down the middle, and

‘edch half of the cortex (tech nically, cach' cerebral

bemnispheré) deals initially with just one half of the

scene.

Fourth, and perhaps most oddly; the cur in the
tepresenitation places adjacent. regions.of the central
part of the scene farthestdpare in the brain!

Fifth, the mapping is spatially distorted in thar
a greater area of cortex is devoted to cential vision
than 10 peripheral: hence the relatively swollen
face and the diminurive'asm and hand, 1.7. This

‘doesn’t mean of course that we actually see people
in-this distorted way—obviously we'dont. But it-




much larger area in our brain fs as-

eal vision (i.c., analyzing whar we are
okmg at) than is devored to peripheral
dcdlcanon of most corucal tissue to

e region of the scene we ate iooking at
at seemg detalls which fall out toward

pping pleserves the anhborhood relanon-
at exist berween cells in the retina (except

the mapping is réminiscent of the “innét
n” proposed in 1.1. But the oddities of the
hg should give any “inner screen” theorist
thought. The first “sereen,” if such ic is,
in the brain is a very stfange one indeed.
The striate cortex is not the only region-of

o be concerned with vision—far from it.
travel from the striate cortex to adjacent
giotis, called the pre-striate cortex because they
ust in front of the striate region. These fibers
erve the orderliness of the. mapping found in
striate region. There.are in fact topographically
gdnized visual regionis in the pre-striate Zone and
¢ describe these maps in Ch 10. For the present,
t note that each one seems to be special-

r a particular kind of visual analysis, such
olor, motion, etc. One big mystery is how the
al world can appear to us as such a well-inte-
ated whole if its analysis is actually conducted at
many differcnr sites, each one serving a differ-
nalytic funciion.

To summarize t_}_l'i's section, brain maps exist

h bear some resemblance to the kind of “inner
en” idea hesitantly ddvanced by our fictional
nary person” who was pressed to hazard a

iess at-what goes on the brain when we see.
However, the map shown in 1.6-1.7 is-normuch,
like: the one envisaged in 1.1, being botli distorted,
yside-down and cut into two.

‘These oddities seriously undermine the pho-

J phlc mietaphor for seeing. But it js timely ro;
haiige. now from Joekinig inside the brain for an

.an “image processor” or “pattern recognizer,” isa

‘Seeing: What (s it?

“inner screen” and to examine in derail sedous
logical problems with the “inner screen” idea as a
theory of seeing. We begin this rask by consadermg
man-made systems for sceing.

Machines for Seeing

A gréat deal-of rescarch has been done on building
computer vision systems that can do visual tasks.
These take in images of a scene ag'input,: analyze
the visual information in these-images, and then
use that information for some purpese or other,
suich as guiding a’robot hand or stating what oh-
jecrs the scene contains and where they are. In out’
terminology, a machine of this type is derivinga

scene description from input images.

Whether.oné should call such a devicea
o . ETI . R ] . ) .
‘perceiver,” a “seeing machine,” or more humbly

moot point which may ‘hinge on whether con-

‘sciousnéss can ever be associated with non-biologi-

cal brains. [n any event, scientists who work on the.
problem of devising automaric image-processing
machines would call the activity appearing on the
“inner screen” of 1.1 a kind. of gray level descrip-
tion of the painting, This is because the “inner
screen” fs a representation signaling the various
shades of gray all over the picture; 1.8. (We ignore
colot in the presént discussion, and also many
intricacies in the perception of ¢ gray: see'Ch 16).

Each individual brain cell in the screen is describ-
ing the gray level ar one particular poiat of the
picture in terms of an activity code. The code is
simple: the lighter or moré brightly illuminzted the
point in-the painting, the more active the cell.

The familiar deskrop image scanner is an ex~
ample of a humian=made device that delivers gray
level desctiptions. fts optical sensor.sweeps over the
image laid face down on its glass surface, thereby
measuting gray levels directly rather than from a
Jens-focused image. Their scanning is technically
described as a seidal operation as it deals with dif-
ferent regions of the image in sequence.

Digital cameras. measure the point by point
intensities of images focused on their Irght sensi-
tive surfaces, so in this regard they are similar to
biological eyes. They are said to opérateiin parallel
because they take rheir intensity mea_s‘_ureméms
everywhere over the image at the same instane,
Hence they can deliver their-gray levels quickly.



A sample of pixels from the uppet left section of the speciacle
region picked out above. This shows the pixel intensities both as
different shades of gray and as thé numbers stored in the gray fevel

description in the computer's memory,

1.8 Gray level description for-a small region of an image of Lennon

Thé intensity measurements taken by both scan-
ners and digiral cameras are recorded as numbers
stored ina-digital memory. To call this collection
of numbers a “gray Jevel description” is apt becatise
this is exactly whar the numbers are providing, as
in1.8.

‘The term “gray level” arises from the black-
and-white narureof the system, with black being
‘regarded as a-very dark g:fély (and recorded with a
small number) and white as a very light gray (and
recorded with a large number).

The riumbers are a description in the sénse
defined carlier: they make expliciz the gray levels
in the inpur image. That is, they make these gray
levels immediately usable (which méans there is
no need for further processing to recover them) by
subsequent stages of image _pfoces'sing;

Rerinal images are upside—-do._wn_,_duc to the
‘optics of the eyes (Ch 2} and .many people are
‘worried by this. “Why doesn the world therefore
appear upside down?”, they ask.

' -Specfa_cie:_le_n_s region enlarged'fo
reveal individual pixels as squares
with different gray levels

‘The answer is simple: as long as there is a
systematic correspondence berween the outside
s¢ene and the retinal image, the processes of image
interpretation can rely on this correspondénce, and
build up the required sceéné desciiption according-
ly. Upside-down in the image is simply interpreted
as right-way-up in the world, and that’s all there is
to it

If an observer is equipped with special spectacles.

“which optically invert the retinal images so that

they become the “right-way-up,” then the world

: : 5 y-u

appears upside-down until the ebserver learns.to.
cope with the new correspondence between image

‘and scene. This adjustment process can rake weeks;

but it is possible. The-éxact nature of the adjust-
ment process is not yet clear: does the upside-down

‘world réally begin to."look” right-way-up again, or

is‘it simply that the observer learns. new partérns of
adjusted movement to cope witli the strange new
perceptual world he finds himself in?




Try squinting to biur
yourvision while-locking:
at the “black portrait’
versions. You-will find
that Lennon magically
-appears'more
. visible. See pages
128-131.

<9 Gray level images
"he images differ.in pixel
ize from small to large.

Gray Level Resolution

he number of pixels (shorthand for picture ele-
ments) in a4 compurter’s gray level description varies”
accordirig to the capabilities of the computer (c.g.,
the'size of its memory) and the needs of the user.
or éxample, a.dense array of pixels requises a Jarge
“moryand produces.a gray lével description that
Is up very fine details. This is now familiar to
iy people due to the availability of digital cam-
that caprure high resolution images using mil-
of pixcls. When these are outpur as full-rone
uts, the images are diffrcult ro discriminare
filtii-based phortographs.
ewer pixels are used, so thar each pixel rep-
the average intensity over quite a large arca
input image, then a full-tone printout of the-
¢ takes on a block-like appearance. That is,
apes are said to show quantization effects.
ese possibilities are illustrated in 1.9, where the
ame inpurimage s represented by four different
ray level iimages, with pixel arzays ranging from
wiresolution.

Seeing: What Is It?

An ordinacy domestic black-and-white TV set

also produces an image that is an array of dots:
The individual dots are so tiny that they cannot
be readily distinguished (unless.a TV screen is
-observed from quite-close).

Representations and Descriptions

hardware vs. brain-

‘the two cases. This’

It is-easy to sec why the computer’s gray level

description illustrated in 1.8/is-a similar sort
of representation to the hypothetical “inner.
sCree_:lj?"-slio\yn in 1.1. In the latter, brain cells
adopr different levels of activity to repre-
sent {or code) different pixe} intensities. In
the-former, the compnrer holds different
nunibers in its memory registers to-do
xactly the saime job. Se both-systems
provide a representation-of
the gray level déscription
of their input image,
even though the
physical scuff
carrying this
description
(computer

ware) is differenc in

distinction berween

the functional or'design
status of a representation (the
job it performs) and the physical embodiment of
the representation (different in man ot machine
of course) is an extremely important one which
deseives further elaboration.

Consider, for.example, the physical layout of the
hypothetical “inner screen”™ of ‘brain cells. This is an
anatomically neat one; with the various pixel cells
arranged-in a format which physically matches the
arrangement of the corresponding, image. points.
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In sharp contrast to this, the computer registers
that perform the same job as the hypathetical brain
cells would not be arranged in the computer in a
way which physically matches the inpuc image:
That is, the “anatomical” locations of the registers-
in che computer memory would not necessarily
be arranged as the hypothetical brain cells are, in:

a grid-like ropographical form that preserves the
neighbor-to-neighbor spatial relationships of the
image points,

Instead, the computer registers. might be ar-
ranged in‘a variety of different ways, depeiding on
many different factors, some of them to do with
how the' memory was. manufaczured others stem-
ming from the way the compurer was programmed
to store information. The.computer keeps track of
each pixel measurement in.a very precise manner
by using a system of labels (rechnically, poinzers)
for each-of its registers, to show which part of the
image edch one encodes. The detiils of how this
is done do not concern us: it is sufficient ro note
thar the labels ensure that each pixel value can'be
retrieved for larer processingas and when required.
Consequently, it is true to say that the hypotheti-
cal brain cells of 1.1 and the receptors of 1.2 are
serving the same representutional function as the
compiiter memory registers of 1.8—recording the
gray-'lcvel of each pixel—even though the physical
by, 'f thc l:cprcsen[atlo nin each case dlfFers

répresent the pixe

The idea that dlff'crcnr physical entities can
mediate the same information | processing tasks is
the fundamental assumptiof underlying the field
of artificial intelligence, which can be defined
as the enterprise of making compurers do things
which would be.described as intelligent if -do'né'jby
humans:

Before leaving this topic we note another major
difference between the putative brain cells coding
the gray level description and comiputer memory
registers, Computers are built with an extremely
precise organization of their components. As scared
above, each memory register has a label and irs
contents can be set to répresent differerit. things
according to the program being run-on the com-
puter. One moment the register might be holding

a number within a spreadsheet, a few moments

later it might be holding the code for a lester in

-document being edited usi ng a word processor,

or whatever, Indeed, the capacity for the arbitrary
assignment of computer registers, to hold differ-

‘ent contents thar mean different things ac different

times according to the particular compuratian
being run, is held by some to be the true hallmark
of symbolic computation.

Buc this capacity for-arbitary and changing as-

signiment is quite unlike the braid ¢ells supporting

~vision, which, as far as we presently understand

things, are more or less permanencly commirred to
serve a particular visual funcrion (but see the caveat

‘below on learning). That is, if a brain cell is used

to. represent a scene property; such as the orienta-
tion of.an. cdgc, then that is the job that cell always
does. Ir isn’t qumkl_y-. reassigned to represent, say, a
dog; or'a sound, etc., under the control of other

‘brain processes.

Tt may be thar other brain regions do-conzain

cells whose functional role changes from moment

to moment (pettiaps cells supporting language?), If
so, they would satisfy the arbitrary assignment defi-
nition of a symbolic computational device given-

above. However, some have doubted whether the

brain’s wiring really can suppoit the highly accurate

cell-to-cell connections that this would require. in

any event, visual neurons do, not appear:to have
this property and we w1l] noc use this definition of

symbalic computation in this book.

A caveat thar needs ro be posted here s to do
with various phenomena in perceptual learning
we get better at various visual tasks as'we practice
them, and this musc reflect chariges in vision brain

cells. Also, plasticity exists in brain cell circuits in
early development, Ch 4, and parts of the brain 1o

do with vision -may even be taken-over for other

funcriotis following blindness caused by losing the
eyes (or vice versa: the visual brain may encroach
on other brain areas). '

Bur this caveat is about slowly acting forms of
leaining and plasticity. Tr does pot alter the basic

point being made here. When we say the visual

brain is a.'sjr'mbo']ic processor we are 7ot saying that
its brain cells serve as symbols in the way that pro-

grammable computer components serve symbolic

functions using different symbalic-assignments
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from moment to moment.




ndér__s’tanding Comp'l'ex Information

we dwelt on the point that certain

and computer memory registers could
e task -(in this case representing

oint image intensities) despite huge dif-
.their physical characteristics? '
swer'is that it i§ a good way of introduc-
nking theme running through this boek.
that we need 1o keep clearly distince Ziffer-
‘of disconrse when trying to.understand

omponents {transistors, resistors, etc.) and 'zﬂsp an
derstanding of the design used to connect these
mponents so that they work as a radio.

is point may seem selfcevident to many read-
1§ but when it comes to studying the brain some
cientists in practice néglect it, believing thac the.
explanation must lie in che “brainware.” Obviously,
eed 10.5tudy brain structures to uridesstand
the brain. Bucequally, we cannot be said to under-
and the brain unless we-understand, among other
ings, the prmaple: underlying its design.

Theories of the design principles underlying see-
ng system are often called computational theo-
ries. This term fits analyzing seeing as an informa-
fion: processing task, for which the inpucs are the
iﬁlagés captured by the'eyes and the outpucs dre
various representations of the scene.

Often it is useful t havé a level of analysis of
seeing intermediate between the computational
theory level and the hardware level. This level
is concerned with-devising good procedures. or _
algorithms for implementing the design specified
by the computational theory. We will delay specify-
ing whar this level tries to.do until we give specific
examples in later chaprers.

What each level of analysis tries o achieve will
become clear from the numerous examples in this
book. Wé.hopc that by the time you have fin-
ished reading it we will Hiave convinced you of the
importance of the compuitational theory level for
understanding vision. Moreover, we hope we will

Seeing: What ls°It?

have given a number of suffiﬁiencly- well-worked
out examples.to illustrate its imporance when it
comes to understanding vision. For the moment,
we leave this issue with a famous quotation from
an influential r':omputa_ti'onail theorist, David Marr,
whose approach to studying vision provides the

linking theme for this book:

Trying to understand vision by studying
only neurons is like trying to understand
bird flight by studying only feathers: it just
cannot be done. {(Marr, 1982y

Representing Objects

‘The “inner screen” of 1.1 édn, then, be described

asa particular kind of symbolic scene representa-

thﬂ. The activities of the cells which compose the
“screen” describe in a symbolic form the | intensities

of corresponding points-in-the retinal image of the

scene being viewed. Herice, the theory proposes,
these cell activities represent the lightnesses of the
corresponding points in the scene. We are now in a

-position to see one reason why thisis such.an inad-

equare theory of seeing; it gives ussuch a woefully
impoverished scene description!.

The scene description whicly exists inside.our
heads is 70t confined sunply t0 the lightnésses of
individual points i the scene before us. Ittells us
an enormous.amount more than this. Leaving aside
the already noted limitation of not havmg anything
‘to ‘say about color, the “intier screen” description
does not hélp us understand how we know what
objects we are looking at, or how we are able to
describe their various features—shape; texture,
moyement, size—aor theirspatial relationships one
to another. Such abilities are basic to seeing—they

are what we have 2 visual system for, so that sight

can guide our actions and thoughts, Yet the “inner
screén” theory leaves them out altogether.

You might feel tempied to reply at this point:
*I doni’t really understand the need to propose
anyfhing more thanan “inner screeri” in order to
explain seeing. Sutély, once this kind of symbolic
description has been built up, isn’t that enough?
Are not-all the other things you mention—recog-
nizing objects and so forth—an immediately given
consequience of havmg the photographlc type of
representation provided by the “inner scréen™?”

One reply to this question is thar the visual
system is:so-good at rélling us what is in the-world

1




Chapter 1

around us that we are understandably nisled into’
taking its effortless scene descriptions for granted.
Perhaps it is because vision is so effortless for us
that is temptmg to suppose that the scene we are
lookmg at is “immediately given” by-a photograph-
ié rype of representation. But the truth is the exact
op_posme. A.['I'lVII]g ata- SCCnC dESCI'lPUOI] as gOOd

as that provided by the visual systemis an im-
mensely. complicated procéss. réquiring a great deal.
of interpreration of: the often lifnited information
contaitied it gray level images: This will become
clear as-we: procecd through (he book Achlcvlng a

e _'bram picture of the
 suggestion that this brain

Gr conscious visual experi-
ble:with the theory is. that al-
symbollc bams- for vision, the

e retinal image to decide
Scene and to act approprn-

ceptor mosaic It QEsHit take s, any further coward
using vision. to-guidé action to propose a brain
picture more of:less mirroring the retinal one.
“The inner screen theory.is thus vulnemble ‘to what
phllosophers call an nfinite’ regress: the problems.
with the theory canniot be solved. by positing.an-
othier plcture, and so on ad.infinitum.

So the main _p_o__mp_be_mg a;gued_here"is thac the
innier screen theory shown in 1.1 totally fails to
-explain how we can recogjiize the various objects
and properties of objects in the visual scene. And
the ability o achieve such recognition:is anything.
but an immediate consequence of having a pho-
tographiic representation. A television set has pixel

imtages but it is precisely because It cannot decide
what is in the scene from whence the images.camie
that we woutld not call it a “visual perceiver.” De-
vising a seeing machine that can receive a light im-

‘age-of a scene and use'it to- deseribe what is in the

scene is much moré complicated, a problem which

is as yet unsolved for complex natural scenes;
‘The conclusion is inescapable: whatever the

«correct theoty of seeing turris out to be, it must

include processes quite different from the sim-

ple-mirroring of the input image by simple
point-by-point brain pictures. Mere physical
resernblance to an input image is not an adequate

basis for the brain’s powers of symbolic visual scene
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description. This point is sometimes emphasized by

saying that whereas the task of the eyes is forming:

images of a scene, the task of vision is the opposite:

Zmage inversion. This means getting a description
-of the scene from images.

Images Are Not Static

For simplicity, our discussion so.far has assumed
that the eye is stationary and thar it is viewing

a stationary.scene. This has been a convenient
simplification but in fact nothing could be further
from the truth for normal viewing. Qureyes are
constantly shifted around as we move them within
their sockets, and as we move our heads and bod-
ies: And.very often things in the scene are mov-
ing, Hence vision really bcgins with a stream of -

time-vatying images.

Indeed, ir.is. !nteresung to.ask what happens if

the éyes are presented with an unchanging image.

This has been srudied by projecting an image fror_n
a.small mirror mourited on.a rig_hfly- ftting contact
lens so that whatever eye movement is made, the
image remains stationary on the retina, When this-
is done, normal vision fades away: the'scene disip-
pears into-something rather like a fog. Most visual
processes just seem to stop working if they are not
fed with moving images.

In féce, some visual scientists have claimed chat
vision is really the scudy of motion percéption; all
else is secondary. “This is a useful slogan (even if an
exaggeration) to bear in mind, particularly as we
will generally consider; as a-simplifying strategy for
out debate; only single-shot stationary images.

Why do we peiceive a stable visual world
despite our eyes being constantly shifted around?




who has used a hand-held video camera
he visual scenes thus recorded ap-

perceptions of the visualt-world as

vés, heads and bodies? This is an

5,50 that retinal image changes due’
re.cancelled out.

aders will probably not be convinced
arguments against the “inner screen”

of camera, in that it focuses an 1magc
upon its llght-sensuwe retina,

sual processes of the brain is to consider
sions. These phenomena of sceing draw

s the: fact that what we see often differs
y-from what is actually before our éyes.
_ e rion-photographic quality of visual
cne out by the large-number and

sions are illustrated-in this book

an offer valuable clues'about the-
serceptual mechanisms devoted to
explicit scene description. These,
perate well cnough in most circum-
-casionally they are misled by an
ulus; or one which falls outside their
fication,” and a'visual illusion results:
¥ is 4 major current day champion
Gregory, 2009).

xample, at 1.10, which shows dn
Fraser’s spiral. The-amaziag truth

a spiral there:at alll Convince

s by ‘tracing the path of the appat-
‘your finger: - You will find that you.
starting point. At least, you-will if

ful: the illusion s so powerful that it
uce incotrect finger-tracing. But with
ng shows that the picrute is really

Seeing: What Is Jt?

1.10 Fraser’s spiral {above}

This illusion was first described
by the British psychologist James
Fraser in 1908; Try tracing the
spiral with your finger and you
will find that there is no 'spirall
Rather, there are concentric cit-
cles tomposed of segments an-
gled toward the.center {leit).

made:up of conéentric circles. The spiral exists only

in your head. Somehow the picrure fools the visual

system, which: mistakenly provides & scene descrip-

tion incorporating a spiral even though no spiral is
present..A-process which takes concenitric
circles as input and produces a spiral as output can

“hardly be thought of as “phorographic.”
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Another dramaric illusion is shown in 1.11,
which shows a pairof rectangles and a pair of
ellipses. ‘The two members of each pair have'seem-
ingly different shapes-and sizes. But if you measure
them with a ruler or trace them ous, you will find
they are the same. Irictedible but true.

You might be wondering at this point: are siich
dramatic illusions rcprcse_r:ltat_ive of our everyday
perceptiofs, or-are they just unusual trick figures
dreamt up by psychologisis or artists? These il-
lusions may surprise and delight us bue are they
really helpful in telling us what normally goés on
inside our heads when we sce the world? Some
distingiiished researchers of vision, for example,
James Gibson, whose écological optics approach to
vision is described Ch 2, have argued that illusions
are very misleading indeed.

Bur probably a miajority of visual scientists
would nowadays answer this question with i defi-
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nite “yes.” Visnal illusions.zan provide impoitant
‘clues-in trying to understand perceptual processes,
both whcxi-'rhcsc processes produce reasonably ac-
curate perceptions, and wheén they.are feoled into
gencrating illusions. We will see how this strategy
works out as wé proceed through this book.

Atthis point we need.to be a bitclearer about
‘what we mean by a “visual illusion.” We are us-
ing illusions here to undermine any remaining
confidence you might have in the “inner screen”
photographic-style theory of seeing. That is, illu-
sions show that our perceptions often depart radi-
cally from predicrions gained from applying rulers
or other. measuring devices ro photographs.

But often visual illusions make eminently good
sense if we: regard the visual system as usihg_recin‘al.
images to creare represenrations-of whic really is
“our there,” In this sense; the perceptions are not
iliusions at all—they are faithful to. “scene real-
ity.” A case in point is shown in 1.12, in which a
checkerboard of light and dark squares is castin
1.1 'S'_ize-i'li_usion. _ _ shadow. Unbelievably, the owo-squares picked out
The rectangular table tops.appear to have different dimen-  kaye the same intensity on-the-page irt this com-
sions; a$ do-the elliptical ones. If you do. not believe this i Loy ‘ T e .
then fry'measuring them with.a ruier. Based-on figure A2in  PUrel 8P hic but they appear hugely different in.
‘Shepatd (1990). ' ightness. This is best regarded not as an “illusion,”

“1.12 Adelson’s figure: .
The. squarés- labéled-.A .ahd
B have roughly the -same . ..
-gray printed on the page but
they are perceived very dif
ferently. You can icheck -their
.ink-on-the-page  simitarity by
viewing them through small
‘holes.cut in a piece of paper.
Is this a brightness illdsion or
is it the visual -system defiver-
ing a Tfaithful account of the
scene as it is in reality? The dif-
ferent .perceived brightnasses
of the A and B squares could
be due to the visual system
allowing for the fact that one
of them is. seen In shadow.. if
so, the perceived outcomes.
are ‘best thought of as being
“truthful,” not “illusory.” See text.
Courtesy E. H.-Adelsan,

14
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1.13 A real-life version of the kind of situation depicted’in the computer graphic i in1.12

Remarkably, the square in.shadow Iabeled ‘A has a fower inténisity than the square labeled B, a5 shown by the copies at.
the side of thé hoard. The visual system makes allowance for the shadow and to see-what is “really there.” [Black has
due-cause to appear distressed. After; 36 Bf5 Rxf5 37 Rxc8+ Kh7 38 Rh, Black resigned. Following the forced exchange
of queens that cormes hext; White wins easily. with his’ passed pawn. Topalov v§. Adams, San Luis 2005.] Pholograph by
Len Hetherington.

serange though it might seem a firse sight. Rachier, The outcome in 1,12 is not some quirk of com-
it is an example of the visual systeri making due al-  puter graphics, as-illustrared in 1.13 in which the
lowance for the shading to report-on the truestate  same thing happens from a photograph of a shaded
of affairs (veridical). scene.

15
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4.14 Brightness contrast illusions _ _
a The two gray stripes have the same intensity along their lengths. However, the right hand stripe-appears brighter at the
.end which is bardered by a dark ground, darkeér when-adjacent 16 a light ground. '

b The small insét gray triangles. all have the same physical intensity, but their apparent brightnesses:vary according to the
darkness/lightness of their backgrounds We discuss brightness Hlusions’in-Ch 16.

Other brightness “illusions” are shown in 1.14.
These also illustrate the slippery naire of what
is to be understoad by a “visual illusion.” Figure
1.14a could well be-a caseof; makmg allowance for
she.dmg but 1.14b doesn’t fit that kind of i interpre-
tation hecause we do:not see.thése fignres as lying
in shade. Howevér, 1.14b might be a case of the
visual systeny applymg, unconsaously, a strategy
that copes with shading in natural scenes but when
applied to:éerain sotts of pictures produccs an
outcome: tha surpf_is'és us because we.don't see a

1:15a Teacup iltusion

imagine the spoon stobd upright in.thé:cup: Which mark on
the, spoon handie would then be. level with the: cup’s rim?
Check your decision by inspectmg 1.15b on-p.18.

‘against physically measured scene realitiés, then

scenes, but go.unnoriced by-the casual observer,
¥

“The illusory difference in the apparent lengths.

an the-nature of the retinal image, Its task is.to use
rerinal images to deliver a representation of what is
otit-there in the world. The idea that vision is about
seeing what is in retinal images of the- world rather
than in the world itself is ac the foot.of the:delu-
sion that seeing is somehow akin to photographsy.
"That said, if illusions are defined as tthe visual
system getting it seriously wrong when judged

hiuman vision is céctainly prone to some illu-
sions.in this-sense. These éafi arise for ordinary

The, teacup 1lluswn shown in 1.15a iy an-example.
‘The phorograph is-of a perfectly normial teacup,
together with a normal saucer aiid spoon. Try
judging which mark on.the_spoon_ waould be level
with the ril of the teacup if the spoon was stood
upright in- the cup. '

Now: turn the page and look at 1.15b (p.18).

of the two spoons, one lying horizontally in the
saucer and one standing vertically in the cup, is
temarkable. Convince yourself thar this percep-

1.16 The vertical-horizontal ilhision

The vertical .and horizontal extents are the same (check
withi a ruler): This effect occurs in drawings of objects, as
Jn.¢, where the vértical and horfizontal curves are the same
fength.
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Burglar about to-be detected
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i light intensity in the
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-Switch-closed = symbol for corridor darkened

117 A simple burglar alarm systemn-operated by a photocell

tual effect is not a'trick dependent on someé subtle
_phiotography by investigating it in a real-life setting
with a real teacup and spoon. It works just as well
there as in- the phiotograph. Real-world illusions
like these are- more commonplace than is often
réalized. Artists and craftsmen know this fact well,
and learn in their apprenticeships, often the hard
way’ b’_y't_rial and error, that the €yc is by no'means
always 1o be trusted. Seeing is 7ot always belicy-
ing—or shouldn’ be.

“This teacup illusion nicely illustrates the usual
general definition of visual illusions—as percep-
‘tions which depart from measurements dbtained
with such devices as rulers; protractors, and light
meters (the latrer are called :.vm'diml measure-
ments). Specifically, this illusion demonstrares
thac we tend to over-estimate vertical extents in
comparison with horizontal ones, particularly if

the vertical element bisécts the horizotital one.
~The simplest version of this-effecr; illustrated in
1.16a, is known as thevertical-horizontal illu-
sion, The effect is weaker if 'th'c'ver_t'ical line does.
not bisect the horizontal as in 1.16b bur it is still
present. It is easy ro-draw many realistic pictures

conraining the basic effect. The bsim in 1.16¢ is.as

wide as the hat is call, bur ir.does not appear that.
way. The perceptual mechanisms responsible for
the vertical-horizontal illusion are not understood,
though various. theories have been proposed since
its first published report in 1851 by A. Fick.

The illusions just-considered are instances
of spatial disto¥tions: vertical extents can be
stretched, horizontal ones shortened, and so
on. They are eloquent testimony to. the facr that

perceptions cannor be thoughr of 4s “photographic.

copies” of the world, éven when it comes 102




wistial experienceas apparently simple as that of
seeing the length of 4 line.

Scene Descriptions Must Be Explicit.

Explanations of various illusions will be offered in
-due-course as this book proceeds. For the present,
we will retiurn to the theme of seeing is répresenta-
Hon, and afticulate in a little moreé-detail what this
means.

The essential praperty of a.scene representation
is that it ralkes some property of the scene explicit
in a:code of symbols. In the “inner screen” theory
of T:1, the various brain cells make explicit the '
varfous shades of gray at all points in the image.
That is, théy signal the intensity of these grays
in a'way thar is sufficiently clear for subsequent
processes to be able to use them for some purpose
of other, without first having ro engage in more
analysis. (When we say in this book a répresenta~
tion makes something explicit we mean: immedi-
-ately available for use by subséquent processes, no
further processing is necessary:)

A scene representation then, is the result of
processing-an image of the-scene in order to
make-atrribures of the scene explicic. The simplest
example we cani think of thac illuscrates this kind
of system in action is.shown in 1.17, perhaps the
most primitive aitificial “seeing system” conceiva-
ble—a burglar alarm operated by a photoceil. The
cotridor is permanently illuminated, and when the
intruder’s shadow falls over the photocell detectar
hidden in the floor, an alarm bell is-set ringing.
Viewed in our tefms; what the photocell-triggered
alarm system is-doing is: '

1. Collecring light from a pare of the cor-
ridor using a lens. '

2. Measuring the intensity of the light col-
lected—the job of the photoceli;.

3. Using the intensity measurement to
build-an explicit represéntation of the ilfumi-
nation in the cortidor—swiich open symbol--
izes corridor normally fit and switch closed sym-
bolizes corridor darkenéd.

4. Using the symbolic scene description
coded by the state of the switch as a basis for
action—either ringing the alarm bell or leay-
ing irquier,

1.15b Teacup illusion (cont:}
The vertical spoon seems fuch longer than: the horizontal
one. Both aré thé same-size with the samie markings.

Step 3 requires some threshold level of photocell
activity to be set.as an eperationsal definition of
“corridor darkened.” Technically, setting a. thresh-
-old of this sort is'called a _non—lfnea_rﬂptocess_, as it
transforms the linear ourpur of the photacell (more
light, bigger cutput) into:a YES/ NO category
decision. '

Step 4-depends on the assumption that a dark-
ened corridor implies “intruder.” le-would suffer
from an “intruder illusion” if this assumprion was
misplaced, as might happen if a power cut stopped
the light working.

The switch in the burglat alarin system serves-as
a symbol for “burglar present/absent” only in the
context.of the entite system in which it is embed-
ded. This simple switch could be used in a differ-
‘ent éircuit for a-quite different function. The same
thing seems to: be true.of nerve cells. Most seem to

share fundamentally similer properties in the way
they become active; 1.3, but they convey very dif-

‘ferent messages (code for different things, représent

different things) according to.the cireuits of which

they are a pait. This typeof coding is thus called -
place coding, or sometimes value coding, and we
will sec in later chapters how the visual brain uses

it.

A p'r.imi'_ti\_’e seeing system with similar-atcribuees
to this burglar derector is present in mosquito
larvae: ey creatinga shadow by passing your hand
over thcm-_while: they are at the surface of a pond
and you will ﬁnd_th'ey subimerge rapicﬂy, presum-

‘ably for safety using the shadow as warningof a

predator,
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Moie Visual Tricks

The effortless Aluency with which our visual system
deliversits explicit scene. representation is 5o be-
guiling that the skeptical réader might still doubt
that building visual representations is what seeing
is all about. [t can be helpful to overcome this:
;s'ke_p_ticiSm by showing various trick figures that
catch thevisual system out in some way, and reveal
something of the scene represénration. process at
work,

Consider, for example, the picture shown in
1.18. It scems likea perfectly normal case of an
inverted photograph of a head. Now turn it up-
side-down. Its visual appearance changes dramari-
cally—irt is still a head burwhar a different one.

These sorts.of upsidé-down picrures demon-
strate the visual syster at work building up scenc
descriptions which best fit the available evidence.
Tnversion subtly changes the nature of the evidence
in. the retinal image about what is presént in-the
scene, and the visual. system reports aucordmgly
Notice too that the two alternative “secings” of
the photograph actually look different. It is noc

1.18 Peter Thompson’s inverted face phenomenon
Turn the'book upside-down but be ready for a shock.

that we attach different verbal labels ro the picture  ing ﬂ}'_e_conn:n_ts- of visual experience. Fundamen-
upon inversion. Rather, we actually see different wlly different experiences emerge upon inversion;
attributes of the-eyes and mouth in the two cases. therefore, fundamentally different contents must
The pattern of ink on the page stays the same, be recorded on the screen in each case. Bur it is
apart from the inversion, but the experietice it in- not at all clear how this-¢ould be done, The “inner
duces is made radically different simply by turning  screen” way of thinking would predicr that inver-
the picrure upside-down. sion should simply have produced a perception
The “inner screen” theory has a hard time trying.  of the same picture, bur upside- -down. This is not
to account for thie different perceptions praduced  what happens in 1.18 although it is what hap:
by inverting 1.18. The-“inner screen” theorist pens for piceures that lack some form of carefully.

wishes to reserve for his screen the job of represent-  construcred changes.

1.19 interpreting shadows
The picture on the right is 1s an inverted copy of the one.on the left, Try inverting the'book and, you will see that the crater
becomes a hill and the hill becomes a-crater. The brain assumes that light-comes from above, then it interprets thé shad-
ows to build up radically different scene descriptions (perceptions) of the two images. Courtesy NASA.
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1:20- Ambiguous figures.

a Duck or¥abbit? This figure has a long history but it
seems it was first introduced into the psychological litera-
turé by Jastrow: in 1899,

b Vase or faces? From www.wpclipart.com.

Another exarnple’of the way inversion of a
picture-cari‘show the visual systein producing
radically different scene descriptions of the same
image is given in 1.19:.This shows a scene with a
crater alqngsidé one:-with a gently rounded Liill. It
is difficult to believe that they are one and the same
picture, but turiiing the book upside-dawn proves
the point. Why does this happen? It illustrates that
the visual system uses an agsumption thac light
normally coines from. abave, and given this starring
point, the ambiguous data in the image are inter-

preted accordingly—bumps become hollows and
vice versa on. inv.cr_s_i_on_.'

This is a fiiie example of how a visual effect can
reveal a design feature of the visual system, thac
is,.a principle--'it- uses, an assumption it makes,
in jnterpreting images to recover explicit scene
descriptians. Such principles orassumptions are
rechnically often called constraints. Idendifying
the constraines used by human vision s a critically-
important goal of visual science and we will have
much to say about them in later chaprers.

Figure/Ground Effects

Another trick for displaying the scene-deseription
abilities of the visual systeny is to provide it with an
ambiguous input that enablés ic 1o arrive ar differ-
ent déscriptions alternately. 1.20 shows two classic
ambiguous figures, The significance of ambigu-

ous figures is that they demonstrate how different
scene representations come into force ac-different

times. The image remains constant, but the-way

‘we experience it changes radically. in 1.20a picture

parts-on the lelt swap berween being seen as ears or
beak. In 1.20b somgtimes we see a vase as figure
against its grousd, and then at other times what
was ground becomes articulated as a pair of faces—
new figures.

Some aspects:of the scene description do remiain

.constant throughout—certain small features for

instance—but the overall fook-of the picture
changes as each possibility comes into being. ‘The
scene representation adopted thus derermines the
figure/ground relationships that we see. Just as
with the upside-down facg, it is not simply a ¢ase
of different verbal labels being attached at different’

times. Indeed, the total scenc description. includ-

ing both features and the overall figure/ground
interpretation, quite simply 7 the visual experience

-each time.

One last trick technique for demonstrating the:
talent-of our visual apparatus.for scene descriprion

‘is to slow down the process. by making it more

difficult. Consider 1.21. for example.. What do you

.see there? At first, you will probably see litde more

than a miass of blaclk blobs on.a white ground. The
petfectly familiar-object it contains may come to°

light with persistent scrutiny but if you need help,

turn to the end of this chapter to find out what the
blobs potiray.



Qnce the hidden figure has heen found (or, in
our new terminology, we.could say represented,
described, or made explicit), the-whole appearance
of the partern changes. In 1.21 the visual system’s
normally fluent performance has beén slowed.
down, and this gives'us-an oppertunity to observe
the difference between the “photographic” repre-
sentation postulated by the “inner screen” theory,
and the scene description that occurs when we see
things. The latter requites active interpretation of”
the available data. It is not “immediately given”
and it is not-a passive process.

Onevinteresting properry of 1.21 is thar onice
the cortect scene description has been achieved, it
is difficult to lose it, perhaps even.impossible. One
cannot easily return to the naive state, and experi-
ence the picturésas fist seen.

Anather example of 2 hidderi-object figure is
shown in 1:22. This is not an artificially degraded
image like 1.21 but an example of animal camou-
flage. Again, many readers will need the benefit of
beirig rold whiat is in the scene before they can find
the hidden figure (see last page of this chapter for
COLTECt ATISWETS).

The use of prior knowledge about a'specific ob-
ject is-called concept driven oi-top down process-
ing. If such help is not available, or not used; then
the style of visual processing is said to be data

Seeing: What is It?

1.21 What do the blobs portray?
Courtesy Len Hethetington.

1__.22-Anim'al camouflage o
There are two creatures here. Can you find them?
Phiotograph-by:Len Hetherington. )

21




‘Chapter 1

1.23 Can you spot the error?
Thanks to S.: Stone for. pointing this out.

driven or bottoi up. An cxample of the way
expecrations embedded. in concept driven process-
ing can sometime; ‘render us oblivious to what is
“really out there? is shown by how hard it is to spot
the unexpécred eriot in 1:23. For the answer, sée
p. 28.

1.24 Impossible pallisade

Imagine - stepping around ‘the- columns, as though on a-

staircase; You would never get tothe: top {or thé bottom).
By J.P. Frisby, based on a drawing by'L.. Penrose and R.
Penrose.

Three-Dimensional Scene Descriptions

So. far we have confined our discussion of explicit
scene-descriptions to: the. problems of extracting
information about objects from two-dimensional
(2D} pictures, The:visual system, however, is usu-
ally confronted with a scene in three dimensions
(3D}). It deals with this challenge mag’_r‘:iﬁc’é’ﬂtly-

-and provides an explicit description of where the
-various objects in the scene; and their differenc

parts, Jie in space. _
The “inner screen” theory cannot.cope with the

3D character of visual perception: its reptesenta-

tion is inherently flat. An actempt might be made
to extend the théory in d logically consistent man-
ner by proposing that the “inner screen” is really

a 3D structure, a solid mass of brain cells, which
represent the brightness of individual points.in the
scene at all distances. A kind of a brainware stage

‘set, if youwwill,

It is' doubtful whether complex 3D scénes could:
be re-created in brain tissue in a direct physical
way. But even if this was physically feasible for 3D

scenes; what happens when we see the “impossible

pallisade” in.1.242 (You may be familiar with the
drawings of M. C. Escher, who is famous for hav-
ing used impoSsible' objects of this type as a-basis

for many technically intticare drawings.)

If this pallisade staircase is physically impos-
sible, how then could we ever build in ‘our brains
a 3D physical replica of it? The conclusion‘is
inescapab‘]é’: we must loak elsewhere for a possible
basis for the brain’s. representation of depth. (depth

is the term usually used by psychologists to refer to
the distance from the observer to items in.the scene

being viewed, or to the-different distances berween
objects or parts of objects).

What do impossible figures tell us abour the
brain's representation of depth? Essentially; they tell
us that small details are used 1o build up an explicit

‘depth description for local pares of the scene, and

that finding a consistent representation of the
entire scene is not rreated as mandatory.

Just how the local parts of an impessible triangle
take sense individually is shown in 1.25, which

gives an exploded view of the figure. The brain

interprets-the information about depth in each lo-
cal part, but loses track of the overall description it
is building up. Of course, it does not entirely lose




25 Impossible triangle

The triangle you see in the foreground in the photograph.on
the right is physically impossible. t appears t¢ be a triangle
anly from the precise position from-which the phatograph
was taken. The true structure of the photographed object
fs'seen in the reflection in the mirror. The figure is included
to.help reveal the role of the mirror. This is.a case iin which
he'visual system prefers to make sense of local parts (the
srners highlighted in the figure. shown above], rather than
aking sense of the:figure as a whale. Gregory (197'1)'in-
viented an-ohject of this sort. To enjoy-diverse. ‘explorations
of |mp055|b|e objects, see Erst (1996):

track of this global aspect; otherwise, we would
éver notice that impossible figures are indeed
1mpos51blc. But the overall im pos51b111ty is a racher
ognitive” effect—a realizacion in thought rather
than in experience that the figures do not "‘m_'ak_e'
sense.”

If the visual. system ingisted on the global aspect
as- “making sense” then it could in-principle have
dealc with the figures. ddTerently For example, it
could have brokcn up” one corner of the i impos-
“sible- mangle a_nd led. us to see part of it as coming
out towird us and part of it as receding, This is
illuserated by the iangles in 1.25.

‘But the visual system emiphatically does not do
thiis, not from a line drawing nor from a physical
embodiment of the impossible triangle devised by
Gregory. He made a 3D model of 1.25, left. When
viewed from just the right position, so that it
presents the same tetinal image as-the line-drawing,
then our visual apparatus still gets it wrong, and
delivets a.scene description which is impossible
globally, albeit sensible locally: Viewing this “real”
‘impossible triangle has to be one-eyed; otherwise;
other clues to depth come into.play and produce
the physically correct global perception. {Two-gyed
depth processing is discussed in detail in Ch 18.)

One interesting game that can be played with
the trick model of the impassible triangle is o pass

Seeing: What [s It?

another object, such as one’sarm, through the gap.
while an observer is viewing the model correctly
aligned, and so sceing the imposﬁiblc- arrangement,
As-the arm passes chrough the gap, it seems to the
observer tha it slices thirough a solid object!

An impoitant point illustrared by 1.25 is the
inherent-ambiguity of flat illustrations of 3D
scenes, The real object-drawn in 1.25, left, has two
limbs at vety different depths: but viewing with
one ¢éye from thié correct position can imake this
real object cast just the same image on. the rerina.
as.one'in which the two limbs meer in space at the
same point..

"This inherent ambiguity, difficult to com-
prehend fully because weare so accustomed o
interpreting the 2D retinal image in just one way,
is revealed clearly in a set famous demonstrations
by Ames, shown in 1.26. The observer peers with
one eye through a peephole into a dark room and
sees a chair, 1.26a. However, when the observer
is shown. the room from above it becomes appar-

‘ent that the réal object in the room is. 7o the chair

seen through the peephole. In the exarnplé shown

in 1.26b, the object is a-distorted chair suspended

in space by invisiblé wires, and'in 1.26¢ the room

contains:an-odd assemblage of luminous lines,
-also suspended in space by wires. The collection of

‘parts is cunningly arranged in each case to produce.




1.26 Ames’s chair
demonstration

a What.the observer sees when.
he looks into the rooms in b
and c through their respective
peephpoles.

‘b Distorted chair whose parts
are held in-space by thin invis-
ible’ wires. The chair is posi-
tioned inspace such that it is
seen as a normal, undistorted,
chair throtgh ‘the peephole,
without distortion.

¢ Scattered parts of a chair
‘that still look like a normal chair
through the peephole, due to'the.
clever way that Ameés. arranged
the distoited parts in space. so
that they cast the same retinal
image.as a.

Peepholes

for looking .,
into each
darkened
room

a retinal image which minmics thar produced by
thechair when viewed from the inrended vantage
poinr. In the most dramatic example, the lines are
not formed into a single distorted object, but lie in
space in quite.different locations—and the “chair
seat” is white pacch painted on-the wall.

"The point is thar the two roors have things
within them which résult in a chair-like recinal
image being cast in the eye. The fact thar we see
them as the same—as chaits—is because the visual
system’s design-exploits the assumption chac is “rea-
sonable” to interpret retinal informacion in the way
which normally yiclds perceptions that would be
valid from diverse viewpoints. It is “blind” to. other
possibilitiés,- but that should nor deceive us—those
possibilities do ini fact exis.

Another way of putting this.is to say that the.
Ames's-chair- demonsteations reveal thar the visual

. .
LI
b
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system (along with a typical computer vision sys-
tem) utilizes'what is called the general viewpoint
constraint. A normal chair appears as a-chair from
all viewpoints, whereas the special cases used by
Ames can be _:_;E_:_cn as chairs from‘.-jus_t one special
viantage point. The general "&j"icwp'{)in_t <onstraint.
justifies visual processes that would yield stable
structural interpretations as vantage point changes.
The general viewpoint constraint can be embed-
ded in bottom up.processing. It is not necessary

to invoke top down processing in explaining the

Ames: chair demonstrations—thar is, knowing the
shape of normal chairs, and using this knowledge

o guide the interpretation of the retinal image.

Normal scenes are usually interpteted in.one
way-and one wdy only, despite the retinal image-
information ambiguiry just referred to. But it
is pOssiblE to-catch the visual systém arrivirg ac




Initial perception

Later perception that alternates:
with above

1.27 Mach's illusion

‘Seeing: What Is It?

Wlth one.eye closed, try staring at-a piece-of folded paper resting on a table (upper} After-a while it suddenly appears not
as'a tent but as a raised corner (lower). {f the viewer riioves while maintaining the illusory depth perception, then the. ObJEC[

will appear to' move with the viewer's.movemernf.

different descriptions of an ambiguous 30 scene
in the following way. Fold a piece of paper along
its mid-line and Iay it o 4 table, as in 1.27. Stare
at a point about mid-way along its length, using
‘just one eye. Keep.looking and you will suddenly
‘find char the paper ceases to look like a tent as it
“should” do, and instead looks like:a corner viewed

from the inside. The effect is remarkable and well
'\Vof[l] [lyll]g o Obtaln.

“The poing is that both “tent” and “corner” cast
Jidentical jmages on the retina, and the visual sys-
tem somerimes choosés.oné interpretation, some-
times another. It could have chosen many mofe of
course, and. the fact thar it confines itself to these
WO, alternatlves is trself interesting,

Arother famous example of the same soit of al-
ternation, but from a 20D drawing rather than from
-a 3D scene, is the Necker cube, 1.28.

Conclusions-

Perhaps enough has been said by now to convince
‘even the most commirted “inner screen” theorist
thac his photographic conception’of seeingis
wholly inadequate, Granted then that secing is the
businéss of arriving at explicit scene representa-
tions, the problem becomes: how can this be done?
Tt turns out that understanding how to extracr

explicic descriptions of scenes from retinal im-

agés is an extraordinarily bafling problem, which
is one.reason why we find it so interesting. The
prfoblem is.at the forefront of much scientific and
technological research at the present time, but it
still renains largely intractable, Seeing has puz-
zled philosophers and scientises for centuries, and
it continues to do so: To be sure, notable advances

‘have been made in recent years on several fronts
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within psychology, neuroscience, and machine im-
age-processing, and many samples of this progress,
will be reviewed in this book. But we.dre still a
long way from being able.to build a‘machine chat
can. match’ the hurin abiligy to read handwriting,
let alone one capable of analyzing and describing:
complex natural scenes. -

"This is so-despite multi-million dollar invest-
ments in the problem because of the immense’
industrial potential for good processing systems.
Think of all the handwritten forns, leters, ctc.
chiic still have to be réad by humans even though
their contents are routiné and mundane, and all

the equally mundane object handling operations in

industry and retailing,

“Whether we will witness a successful outconie
1o the quest to build 2 highly competent visual
robot in the current century is debatable, as is the
question of whethera solution would impress the
‘grdinary person.

A curious fact thar highlights both the difficul-
ties inherent'in understanding sceing and the way
we. take it so much for granced is that computers
can already be made which are sufficiently “clever”
to:beat the human world champion at chess. But
computers cannot yet be programmed to match
the visual capacities even of quite: primnitive ani-
mials. Moves are fed into chess playing compurérs
it non-visual ways, A computer vision system has
niot yet been made that ¢can “see” the chessboard,
from differing angles in variable lighting condi--
tions for differing kinds of chess pieces—even
though the computer can be made to play chess
brilliantly.

1.28 Necker cube

Prolonged inspection results in aitemaﬁng _perceptions: in
which the shaded side. is-sometimes. saen nearer, some-
times.farther.

Even so, most people would probably be more
impressed with a world-class chess-playing compu-
ter than they would be with a.good image- proces-
sor, despite the fact that the former has been real-
ized whercas the latter remains elusive. It is one of
our prime objectives to bring home to you why the
problem of seeing remaing s6 bmfﬂmg Perhaps by
the end of the book you will-have a greater respect
for your magnificent visual apparaius:

Meanwhile, we have said enough in this open-
ing chapter to make abundantly clear that any ar-
tempt to expldin seeing by building repiesentations
which siinply mirror the outside world by some
sort of physical equivalence akin to photography is
bound to be insufficient. We do-not see our retinal
images, We use them, together with prior knowl-
edge, to build the visual world that is-our represen-
tation of whatis “out there.” We can now finally
dispatch the “inner screen” theory to its grave and
coficentrate henceforth.on theoriés which make
explicit scene vepreséntations their objective.

In tackling this task, the underlying theme of
this book will be the need to keep clearly distinct
three different levels of analysis of secing, Ch 2:
explains what they are and subsequent chaprers
will illustrate cheir nature using numerous exam-
ples. We hope that by the time you haye finished
the book that we will havé convinced you of the
importance: df'diéringuiéhing between these levels
when studying seeing, and that you will bave a
good grasp of many fundamental attsibutes of hu-
man and, to-a lessei.extent animal, vision.




Seeing Edges

5.1 Edges in art arid.in computer vision

- a Sketch of soms of the main contours used in a self-portrait by Albrecht Diirer, illustrating how artists use lines to mark the
boundaries of 6bjects and their parts, such as here the:eyes, nose; mouth, atc. The visual system:seems to create simifar
edge-based représentatioris, marking significant entities in retinal images.
b.A processing sequence from image (left), via convelution usi'h_'g'a circularly- symmetric raceptive field (center), I6 a repre-
sentation.of many.of the &dges in the image (right). This is the-processing-sequence described in this chapter.
c:From image to"sketch, by the computer vision system of Bruce Gooch; Erick Reinhard, arid Amy Gooch (2004), repro-
duced with permission: The early stage of their system starts with a similar sequence:to that shown in b, but then adds
other processing stages, ' '
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Chapter.5
'I ake a look around the scene before you and

you will have no tiouble seeing edges formed

by the boundaries of objects, of surfaces; of surface
markings, and of shadows. This ability to see edges
must reflece the fact that there-are edge feature.
represchtarions somewhere inside our heads.

Artists often use linesto pick our object edges,
5.1, and they have known about the importance of
edges in seeing since the beginning of at, as cave
drawmgs testify, 5.2.

It is of great theorerical interest to the science
-of seeing thar line drawings of objects do not
need 10'be complete for us:to be able to recognize
-objects, 5.3 (see also Ch 8).In its search for object
boundaries, human vision has ways to-get by with
partial evidence. The term {llusory contour is used
for an edge that is seen. where none exists in“the
image (Ch ' 16). The importarice of being able to
cope with breaks in edges soon became apparent in
the early days of computer vision. It was found, to-
the astonishment of investigacors, that somerimes

Why read this chapter?’

[f we are. to understand human vision it will be vital
to understand the early stages of image processing

in the visual pathway. We introduce this topic with:

Marr and Hildreth’s computational theory of edge de-
tection. A ubiquitoys problem in finding edges is'that

images are imperfect; they contain gl_it_t':hj('_efs that-are.
referred to as noise. The theory fackles: the problern
of noise by blumng images, usmg @ process. called’
In esserice, this-consists of applylng a

convolition:
particular kind of opsrator (cf-receptive fi éld in"big-
logical wsmn) dll-over the image. This operator.has

a gaussian profile becausethe computationial theory:

specifies. that: this .is the’ shape that optimally: com-

bines smoathing aWéy_ noise:with. not-disturbing too:

‘greatly where edges-are to be. found in the convolved
image. The next step is to find regxons in the image

where'there. are abrupt changes in image intensities,.

because this is where the edges-are located. This re-
guires measuring inténsity g?édfenrs andfor-changes
in gradients. These are called the first and second
derivatives respectively. Various blologlcally plausi-
ble aIgorlthms are described for implementing the
theory. These algorithnis involve operators that are

remarkably similar to the receptive fields possessed
by cells in the retina and the striate cortex. Using:.the:
task-of edge detection, the chapter illustrates the val-
ue of distinguishing between the computational theo-

ry, algorithm, and hardware levels when trying to un-
derstand complex information pracessing systems.
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5.2 Cave painting
From Lascaux, France. PD-Art.
the pixel values in their grey level images simply
did not have changes marking edges which they.
themselves could see when looking ar the.original
images. This shocking réalization led sorme of the
pioneers of computer vision o postpone working
from natural images and instead use hand-made
edge maps for exploring various visual processes.
Brain tepresentations. for edges cantiot be'all
there is to secing, of course; because we are able to
describe scene characteristics much more compli-

‘cared than cdges. Even so, edge feature represetiza-

tionis might be iminediately useful for guidinig a
grasping-action-around an object. They can also
serve as-an important first step on the way to more
complex perceprual tasks, such as abjecr recogni-
tion or.depth perceptioii, as we will see.

How :should edge detection be tackled? Bars are

a species of edge feature, and we considered in

Ch 3 the task of designing 2 bar detector. This task

‘proved surprisingly tricky but we showed how bar

orientation could be computed from the outputs

- 5.3 Objection recognition from incormplete contours

The'shape of the figureis well captured by the line drawing .;

‘in which some parts of the body boundaries are missing.




a: group of simple cells whose preferred. stimuli
irs of di'ffére.n t orientations. But there are
"types'-of features other than bars and much
to the edge detection problem than just com-
g edge orientation. It is time to have a closer
At the se¢ing problem of edge detection,

ges-in Images

studying seeing, it is always imporrant to dis-
tinguish cleaily berween scenes and the images of

hose scenes. So the first-question to ask-in analyz-
ng the problem of edge detection is: how do edges
n-scenes show up in images?

An image of John Lennon is shown in 5.4c.

¢ pixel intensities of this image are shown as 2

.I:jz'l;111dscapc' in 5.4c, in which height is used-as a

_ F{i'xé]' Intensities-as - a landscape.
Photograph of Johin Lenrion.

Seeing Edges
way of representing intensity. You may be sur-
prised how broken up and cluttered this landscape
appears. Can our clear percepts-of the scernie in
front of the eyes really start from suchia basis? The

.answer is ¥zs. Natural images usually aré as messy

as this landscape suggests.
Part of the messiness in: 5.4b is.caused by the
many edges from the hairs on Lennon's head. Bur.

‘look-at the background in the original image and

in the landscape. The former appears a.pretty flat
grey to-our eyes whereas the latrer is surptisingly
“bubbly” Some of this “bubblyness” is caused by
images having been captured with electronic light
detectors that are a little '*‘n_qi's_y.'” You-can think of
this nese as-similar to the “snow” seeiron a poorly
tuned television. Receprors.in the retina also suf-

ainple of pixels from a greatly magnified image. Each square represents.one: pixel whose intensity (gray level} is given

xel intensities plotted as a 3D.graph, which shows them as a hilly lahdscape.in which the valleys.indicatelow intensities

d-the peaks high intensities.




Chapter 5

5.5.Image noise cleaning

:a Original test image. b Original image with ‘added “salt and pepper” random noise. ¢ The result of smoothing b by.local

.3x3 neighborhood averaging.

fer from random noise fluctuations, so noise is a
problem for human as well-as computer vision.
Our fizst problem to be solved is thus clear. We
need to fisid a principled way to eliminate image
noise, or at least reduce it, prior to secking edges in
images: This ensures that any edges found can be
relied upon to reflect scéne: edg'efs and.not spurious
noise-created image intensity changes.

Computational Theory: Getting Rid of Image
Noise:

Analyzing:this noise cleaning rask -proper‘ly'wo'uld'
an.developing a deep understanding of where:
thie noise:comés from, This wotrld be needed to

develop a r1hc1plcd way of gctung rid-of ic or

Al 't_ask_ ana{')ms -would. be

nce_cled_tp_ dev ood-computational théory for
getting rid of noise '

“We will not explore noise sources in any detall
‘as that would lead us into-some comples
aboit various visual netirons Instead, we will
cousider just noise in receprors and-we will proceed
on the-basis of a very simple fdea; We will assume
that the main sources of receptor noise are spa-
tially random, Whar this means is-chac the noise in
neighboring receptors is assumed to be independ-
et Thmk OFth]S as each receptor being subjecr to
its-own “private” noise, so that noise Auctuations
‘inone recepror cannot be predicted from those in
its neighbors.

This assum ption (another example. of what 7 is
technically called a constraing) allows a neat riick

for gcrting rid of noisé: exploit the “law of aver-
ages to cancel out a lor of the noise. That i is, take
the average of the activities in neighboting recep-
tors and high noise in one will tend, due to the
noise independence assumption, to be canceled our
by low noise in another. Thus the total receptor
noise will tend to average out to zero, [This scheme
is not aimed at noise elsewhere in the visual sys-
tem, particulirly low spatial frequency noise.]

The price-to be paid for using this constrainc is
thar taking neighborhood averages blurs the grey
level description-a lirtle, as we will'sce. But it does.
lead to smoother, less-noisy, images and: the penalry

‘of some blur turns our to be worth paying, Indeed,
we will find that using a range of | images blurred

to different extents is an important aspect of edge
derection, beciuse it is parc of the pracess of find-
ing edges of differenit types (from sharp through to-
ﬁlzzy)

You might be thinking that the averaging
scheme just proposed is a bir extreme. Wouldn' it
be better to give most weight to the central recep-
tor under consideration than to weight it equally
with its nicighbors? That is, instead of substituting
the intensity recorded in each receptor with the
average value of that receptor and its neighbors,
how about using a scheme in‘which the neighbots
somehow contribure celatively less-veight to the
end tesult? It wirnis-out thar chis is exacely the right
thing to do. Bur before explaining this important
refinement, we will describe chie cqual-weighting
idea fitst because ir'is simpler for conveying some:
cote ideas.




Algorithm for Image Noise Cleaning

w can neighborhood averaging be imple-
teéd? A possible computer vision algorithm (or
cedure) is as follows:

Srep 1 For each pixel, add up the pixel intensi-
ties of its immediate neighbors, and then
add this total to the intensity of che pixel.
in question. Call this the neighborhood
total. '

- re_'p 2 For cach pixel, divide its neighborhood
toral by the number of pixels conttibut-
ing o that total, to calculare a mean
{average) intensity. Substitute this mean
for the otiginal pixel intensity.

iort, add up all the pixel intensities in-a region
divide by the number of pixels in that region:

Pixel intensities

mage smoothing

Pixel intensities

Seeing Edges

The region can be of various sizes but for the
present we will use-3x3 parches of pixels (that is;
cach pixel plus its & closest neighbors).

Does this kind of neighbothood averaging work

‘in gercing rid of noise? The idea can be tested by

taking a uniform grey image, 5.5a, and adding
noise randomly 1o each pixel, 5.5b. To highlight
the basic ideas, much more roise has been added
than would be éxpected in either artificial or
biological images. Running the'3x3 local averaging

algorithm on. this very noisy image shows thac it

reduces the rioise quite a lot, 5.5¢; aithough it does
not get rid of ir all. Nevertheless, chis test dem-
onstrates that averaging can help reduce noise for
independent receptor noise sources.

But whatabout local averaging on natural im-
ages? [t produces a smoother image for the John
Lennon picture, as can bé seen in 5.6. '

Pixel locations along slice

Pixel locations along slice

iC nal Lennon image. with alongside it the intensity profile of a-6ne-dimensional slice- indicated by-the horizontal line:
& same after the image-has been singothed using 3%3 focal neighborhood averaging. Notice-that both profiles show
ensity variations at different scales from steep.to shallow.
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Chapter 5

Receptor mozaic
{pixel array)

Cables show connections for
only three receptive fields

Convolution afray

5.7 Convolution using a 3x3
receptive field

:Convolution

The'procedure just outlined is all very well for
computers, as they are good at arithmerical opera-
tions, but how might the brain do the averaging
job with only neurons ar its disposal? Can they be
made to “perform” the required arithmetic using
a method that fics how they work? Thc answer is
yes, but to.cxplain it entails introducing a generally
usefuf procedure for compucters-as well as brains,
called convolution. .
Convolution isillustrated in 5.7. At the: top is

shown schematically a 7eceptor mosaic (rouglily
requivalent to an array of pixels in‘computer vision,
Ch 1) whose activities encode image grey levels.
"Iﬁi_s..r_éccp.t_o_l' mosaic can be. thougtiv of as a highly
s"imp_iiﬁed model of a sinall région of the -rcc_ep:for'
mosaic of a human eye: The receptors send their
outputs into a second array of elements. We will
call these convolution cells, and they are arranged
in a convelution array. The lawés array carry out a
funiction similar to that performed by the bipolar
cells in the retina, as we will see in Ch 6.

~ Each convolution <ell in 5.7 receives inputs
from 9 receptors, arranged in a 3x3 square cen-
tered-on onc recepror. This is illustrated with two.
sample sets of fibers connecting the recepiors to
the convolution array. The receptor clusters for

This.receptor.is
shown feeding two of
‘the three convolution
‘cells whose conngc-
tions to the receptor
mosaic are illustrafed.

Schematic diagra
3x3 receptive fiel
show the 1/9. weigh
applied-to each: réc

input fo the.convolufi

the two samples dre picked out with shading to
help illustrate what each oneis “looking at” in the
receptor mosaic. Fach rece ptor cluster defines the
receptive field of the associared convolution cell.

[ Terminological note rep‘e?zred from Ch 3: The
standard definition of receptive field is the parch of
retina that influences the output of the cell in ques-
tion. Strictly speaking, it is not defined in terms
of the pattern of weights associated with thar arez,
but in practice the term receptive field is often used
to réfer to that pattern, as we do i this book. For
the Jatter-usage, the receptive field concept is simi-
lar-to template, aperator, mask, or weighting function
used in the computer vision litetature.]

The two sheets of cells, receptor thosaic.ind
convolution array, are shown in 5.7 neatly lined
up one.over the other. That is, the central cell in
cach receptor cluster feeds a convolution céll whose'
positioii in the convolution array has a matching
spatial location. This helps us keep track of what
is going-on in the figure but the physical layout
wotld not be critical in a vision system. The key
property is whéte the connecting fibets comé from:
and-go 10, a point that was made in Chs 3'and 4 in_
connection with place coding.

- For simplicity, only the fibets to. three convolu-
tion cells from the receptor. imozaic.are shown in




‘in 5.7, but in fact every canvelution cell would be
onnected to the receptor mosaic in a similar fash-
ion. The key difference between convolution cells
s that the set of inputs defining their receptive
elds come from receptor clusters in-slightly differ-
1§ positions in the receptor mosaic. There would
‘be hundreds of fibers linking the: owo arrays. In 5.7
there are only 72x45 fibers but there would
bé very many mote.id a realistically sized vision
ystem.
- Because of these multiple connections, each
régeptor has'to féed many different convolution
“cells. Again for reasons of simplicity, 5.7 shows
-only one instance of this kind——this is-the receptor
sicked out with- the arrow-+label. In other words,
the two-convolution cells in question have wiring
‘connections such that they share one receptor i
“commion.

The small inset in 5.7 shows ari example of a
- possible set of receptive field Wéigbﬁngé,_ which
‘are the same for each cel in the convolution array.
For e‘xamp_lm if a receptor is signaling 18 units of
activity (this'number is its'code for the associated

mage intensity) then the influence transmitred to
the convolution array is much smaller than this, in
fact only 1/9th. Why 1/9th? Because there are
9-inputs in this particular 3x3 receptive field,
and.so multiplying each one by 1/9th comes to
 the same thing as adding up ail the 9 inputs and
leldlng by 9 to get the mean. The conclusion is
that weighting inpucs is a neac trick fordoing the
_averaging arithmetic we require. '
[To see why this works, consider ifall the
- 9'receptors in-a receptive field had the same activ-
ity level, say 18 units, The neighborhood total for
“all nine will come to 9% 18« 162. Obviously, divid-
ng this by 9 to get the miean will give 18, which
i the answer we want because all receptors in this
example were registering 18 unirs of activity. Now-
consider doing the same thing by welghtmg Each
inpur fiber delivers 18 x 1/9'=2 uiits of activity,
and adding up all 9 inpurs gives 9x2=18.]

This is good news because weighting is conven-
ient if neurons are all you have to do-the job. They
work by transmitting excitation or inhibition,

Ch 3, 1n 5.7 all the fibers from the receptors pass
on excitation, with the precise amount of excita-
‘tion adjusted to suit the weighting required for the
compuration iii question. '

Seeing:Edges

“To simsiarize 5o far: convolution using sutitably
weighted connections is one way to impleinent
a local neighbothood averaging noise cleaning
algorithm. This is said to be &iologically plausible
because it embodies a procedure thar lends itself ro
being readily implemented in neurons.

Convolving an input image witl a receptive
field is a widely used technique for processing
images, in both.nian-made and biological visual
systems. It is essential to understand convolution
to understand vision.

In the case we have been considering, convalu-
tion replaées the originalgrey level description
with a smoothed grey level description, which is
said to be the convolved image. However, many
other sorts of receprive fields can be. used and for
them the convolved iinage will not be a more.or
less.clase replica of the original grey fevel descrip-
tion. Rather, the activity levels in-the convolved
irnage will vary dccording ta the * goodness of fit”
of the receptive field at each location in the input
image. The “bar-tuned” receptive fields-we inves-
tigated in Ch 3 are-a:case in point, and we will see
other cxamplcs in due course. For the moment,
remember thar each clement in the convelved im-
age has 4. position which signifies the point in the
input image on which the receptive field was cen-
tered when the receptive field’s goodness of fit with
the relévanc point-of the iriage was calculated.

To reiterate the key terminology, convolution
can be defined as applying a receptive field all over
animage,

Equivalent Algorithms

Sumimatizing the simple weighting trick for imple-
henting noise cleaning by taking a local netghbor-
hood average gives us:

Step 1 Fot each pixel 2, multiply its intensicy
and that of its neighbors by 1/, where N
is the number of elements in the.receptive.
field centered on pixel 2

Step 2 Add up the values so obtained, and put
the result into the convolution cell cor-
responding to the pixel 2.

The point of giving this second procedure in this
form is 1o emphasize that a computational theory
of a task can usually be implemented with onie of
a number of algorithms. Eachr one émplements the
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Smaller @

Larger.o

-Standard deviations -

5.8-Gaussian distributions

a.Cross_-secﬁons‘_of iwo gaussians of 'diﬂ_er__en't widths'of “spreads.” Thie parameter that determines the size of the spread
is the standard deviation (g, pronounced sigma). Weight:strength is plotted on the vertical axis.
b 3D picture of 2 two-dimensional gaussian, with its.profile shown as the graph'on the left.

same theoty-and dchiéves.ari equivalent outpue but
cach does the job ina different way. Which one is
chosen will be'determined in’ pare by the-hardware
or biainwarc ayailable for running the procedure.
ologically plausible procedures.

leads us narurallyto the kind of weighiting just
set out. We will see weighting of this kind in the
receptive fields of the bipolar cells of the retina, in
Ch6. S
The noise: cleaning, r'e"f:'e'priv_t'-.ﬁcld used.in 5.7
rdises some.intercsting questions. For example,
how big should the receprive field be? T it suffi-
cient to use in general just the closest § neighbors
for.cach pixel to smooth the noise away? Or should
-a larger sizé than 3x3 be used?”
It turns-out that biological vision systems have
-2 rangeof receptive field sizes. Before explaining
why, ‘we need to.delvé a bit deeper into thé ques-
tion 6f now best to.average out noise.

Gaussian .Smoothing

“We said earlier thar the 3'x 3 averaging procedure

was 4 very simple scheme for noise cleaning, cho-

sen to introduce some core ideas. It.turns out on

closer inspection that instead of all the pixels hav-
ing equal weights when feeding into the convelu-
tion array those near to the center of the receptive
field should be weighted more highly and those
further way less so.

The particular shape of the weighting distribu-
tion has'to optimize two. con_ﬂicting goals: smooth-
itig away noise and not disturbing too greaily
where edges are to.be found in the convolved
image, There is-a theorem (see Marr and Hildreth,
1980) stating that the shape of weighting distribu-
tion thatachieves an aptimal trade-off between the
twa goals is bell-shaped. Examples are shown in
5.8a.




The technical name for a distribution with this
\pe is a gaussian, after the mathematical genius
tl Friedrich Gauss (1777-1855) who discovered
As c¢an be seéen in 5.8__a,__th_e‘ pixels nearcst the
ter of the receptive field have largest weights
d thus have most influence. The weights then
educe, smoothly and gradually; to zero at the
oundary of the field. This pattern of weights is
wn in 5.8b as a three-dimensional vievr of a
eptive field, with weight strength agdin plotted
n the vertical axis. '
An examaple of the benefit of gaussian smooth-
g over smoothing with 4 rectangularly shaped

eld is showi in'5.9. The former but not the latter

covers the vertical grating to which. a weaker-
her spatial frequency (Ch 4) horizonzal grating,
as been added as. hoise.

mage Edges have Different Scales

 close look at the i .image intensity landscape of

he John Lennon image in 5.4 reveals that its

5.9 Comparing different methods of smoothing

Seeing Edges -

variations in intensity range over different spatial.
seales. That is, some intensiry changes occur over
small image regions and are thus quite sudden,
e.g., the steep, sharp edges from the specracles.
Others occur more gradually over larger image
regions, e.g., the shallow, fuzzy edges from shadaws
around the chin. The profiles of two slices of this
image shown in 5.6 nicely illustrate this fact.

The differenc scales reflect different sorts of
scenc entities. Sharp edges often arise from object
bounclarlcs or texture markings, whcrcas shallow:
ones usually arise from shadows, It is imiportant to
find a way of dealifig with this fundamental fact
of scale in developing a‘theory of édge detection.
{Small and large scales-of image incensity changes
are often referred 1o as conveying high and low
spatial frequencies respectivély; for reasons made:
clear in Ch 4.)

One'way ofﬁndmg edges avdifferent scales is-
t0.use a range of receptive field types, each one

“tutied” to a limired range of edge scales. Each

.a Vertical grating to which has been added:a horizontal gréting of equal-contrast.

b :Smoothing-a with a circuiar symmetric: gaussian filier with the receptive field of the kind shown in plan view.and in profile
in &: This preferentially attenuates the narrow.(horizontal). grating.-

-d Smioothing a with & rectangular-shaped fitter with-a. profile of the kind shown in e, This rectangular fi fi lter does not.afteny-
ate the narrow (horizorital) grating. as much as the gaussian fi filter,
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510 Convolving the Lennon’image with gaussians of different standard deviations, o’
Fromatodio= 12,4, and 8 pixels of the receptive fi field used in the convolution.

such receprivc'-'ﬁ'e]d-- is said tooperate as a filter
because:it “lets through” only édges.ar a Pparticulac
scale: But what are the:principles for designit trig
scale-tuned receptive field filtérs? This questiof,
as usual, forces us to Arid a-decént: computational
theory of the task.

Finding Edges at Different Scales

It was David Marrand Ellen Hildreth-who frst
clearly stared, in 1980, edge detection as 4
-optimization problem. Specifically; they stated
thar edge detection required an optimal trade-off
between two conflicting tasks: selecting edges ara
given scale and accurately localizing the positions
«of edges in the image ar that scale, This led them
to use gaussian receptive fields spanning 2 range

of sizes, thereby exploiting.the theorem referred to

above in connection with neise: cleaning.. This.is a

nice examnple of a‘compurational theoty, because
it is a mathematically well-founded solution to.a
clearly stated problem.

So, filering for different scales is achieved by
having a range of different convolution arrays, each
one usinga differently sized receptive field, but all
having weightings of the basic bell shape, 5.8. The
paiameter thar determines the size, or equivalently
the spread, of a gaussian is its standurd deviation,
¥ (pronounced sigma). Profiles of gaussians with-
large and small & are illusteated in 5.8a.

Results-from using the Marr/Hildreth scale
filtering scheme on the Lennon imageare shown in’
5.10 using four gaussians, each with a different B.
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‘As can be seen, the smallest (=1 pixel) preserves
‘the sharpest image intensity variarions. The image
is increasingly blurred as®.is enlarged—compare
the resules for¥=1,.2, and 4 pixels. The largest

" bell-shaped receptive fiéld corapletely removes the-
fine variations in intensity, both those due to noise
and to sharp. sccnc_edges_.

' Computational Theory for the Task of Measuring
Image Gradients

We started out by saying thacimage intensities can
be thoughr of as a hilly landscape, 5.4. This malces
it natural to think of edge detection as the task of
measuring fmage intensity gradients. So we now
nieed a task theory telling us how to measure these
gradients in our scale-filtered images. A simpli-
fied account of this is possible using the metaphort
of the input image intensities forming 2 hilly
andscape because the rask then becomes one of
measuring. the gradients of hills. Technically, this
is called ﬁnding_'thc first derivative of the imagc
landscape. . _

A road: sign saying 14%, or 1 in 7, warns you
that you willshorely go up of down 1 meter for
every 7 meters travelled along the road. The num-
bers 1/7 =0.14, or 14% , are called gradients. This
‘example shows thiat measuring agradient means
working outa ratio: the change of height fora
given horizontal extent. In our case, this translates
to finding edges by measuring how much intensity
aes up or down over-a given region of the image.
“That is as much gradienc meéasuring theoty as we
need in this introducrory account. '.

‘Algorithim for Measuring Image Gradients

“The rask-theory tells us that we should measure im-
age gradients arid what this meéans. We now need

a biclogically plausible proceduie for doing it..A
imple-algorithm is:

Step I Measure the difference iniintensity
{height) berween Tmage poinits.

Sfep 2 Divide this difference by the distance be-
tween the points, to obtain the gradient.

As. a_n.-'emmp'ie,. consider a case of the image inren-
ity gradient beaween neighboring pixels, whose
fitensities happen to be 10-and 5 units: The gradi-
nt is.then simply (10-35)/1=5 units of intensity
e unit of distance. The latter is measared in pixel

Seeing Edges

widths, which in this example is 1 as it concerns
neighboring pixels.

Can this be procedure be realized in neurons?
An equivalent but more suitable scheme turns out
to be:

Step 1 Foreach pair of neighboring pixcls,
weight the inputs from one as positive;
the other as negative, by multiplying by
+1 and -1 respectively.

Step 2 Add rogether the weighted ifiputs.

This procedure is arithmetically equivalent to the
previous one. [t is biologically plausible because it
is easy to implement with neurons.

Measuring Gradients'in a Slice of an Image-
Intensities Landscape

To iltustrate this procedure it is helpful to be-

gin with just asingle slice of an.image intensity
Jandscape, and then return latet to.considering

the whole image. The slices shown in 5.6 are a bit
complicated for showing the basic ideas and.so an
artificially generated slice is illusrrated in 5.11. It
shows a cross-section in which, working from the
left side, inténsities rise and then fall, -reﬁectmg the-
presence of a bright ridge. Nore that the gradient
at Q is steeper than at $; walking up the hill.ac Q
increases your height-considerably more than walk-
ing at S'for the same lateral distance.

"The weighting of neighboring pixelsin 5.11 is
‘achieved by using a receptive field with 1 and +1
weights. For example, the pixel value on one side
of the point labeled P is mulriplied by -1 and the
‘pixel value on the other side by +1, and then the
two quantities so obtained are added together. In
the case of P, this gives (=3) + (+5); which equals
0. Zero makes sense in this case as P is on a hori-
zontal part of the.image intensity profile. The zero
result is entered in the graplh labeled convolution
profile, 5.11b.

‘The same procedure is also-applied in 5.11 for
the points Q, R S, T, and U. But of course, as the
gradienr of the whole profile is required, it is neces-
sary to apply the (-1, +1} receptive field all along
the image intensity: proﬁlc shown in'5.11a, rather-
than just at the chosen points G, R, S, 7, and UL
Applying a receptive field all ever an image is called
convolution, as stated above. The image is said to
‘have been convolved with the receptive field.
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Seeing Edges

To sum ip so far, 5.11b is the convolution

ofile derived from 5.11a; using the (-1,+1)

eptive field. This profile illustrates what s called
ne st derwatwe. It shows that when the intensity
rofile is flat, the outpur given by this receptive
eld is 0; as required."On the steepest parts'in this

examplc, the output is +30 or =30. (which means

O:unics of intenisity: change for a shift across the
iage of 1 pixel}. The plus'sign indicates an up
adient, and the minus sign indicates a down
adient. The slope of the shallowest non-zero
adientis +1, e.g., ac point §in 5.11a.

a i'mage profile

gasuring Changes in Gradients

easuring gradients (finding the first derivarive)
useful thing to do but it is also desizable to
tracr informarion about changes in gradicits.
sing this is called finding the second derivative.
may scem a bir odd at first to think of measuring
anges.in changes. However, changes in intensity
radientsare: significant because they are usu-
caused by things in the world that the visual
system wants te know about, such as illumination
hanges, surface orienration changes, and changes:
ur facc reflectdnce {e.g., the edges.of abjects or
arface markings).
Oneway in which a gradient change can be
ocated is to search for a peak.in the first deriva-
¢ profile. The changes in slope in 5.11a cither
side. of Q producea sharp peak in jts first deriva-
ve; 5.11b. Norte that a trough (a “negative peak’)
curs for the point U. This point is similar to
Jiin that it has sharp .changes of slope on eicher
de: Howeéver, a trough occurs in the convolution-
rtput rathet than a peak simply due to the signs
e (-1, +1) receptive ficld coﬁpled with (h_e
owniward direction of the slope at U. Ifa (+1,-1)
receptive field had been used then the rough at U
would have been a peak, and the peak associated
ith Q would have become a trough.
To summarize; the first-derivative measures gra-
dients and the second derivarive measitres changes

Receptive fields

A,

Zero crossings

gradienrs. The latter can be found by measuring
adients in the firsc derivacive.
The second derivative of the i intensity-profile in
5.11a is shown in 5.11c. Note that at poiiits where
peak or trough is located in the first derivative,
11b, the second derivative passes from positive:
to: negative: Such 4 point is called, natural-

5,12 Convolving receptive. fields with an edge
The intensity change in a gives rise to a peak.or a irough in
the first derjvatives b and ¢. it gives rise to-a zefo. crossing’

in its second derivatives d and e,
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'ly enough; a zere crossing, 5. 12. Hence, there are
two-ways of locating changcs in intensity gradient:

eitherfind zero crossings in the second derivative
or find ‘péaks or-troughs in the fitst derivative.

Single-Step Way of Measuring Changes in’
‘Gradients:

We have said that the second derivative can be

over. That is,.use the following algorithm:

Step: 1 Measure gradients using réceptive fields
of the type (~1,+1) or (+1,-1).

Step 2 Measure gradiesits in the output of
Step 1, again using 'ﬁeld_'s of either (-1,+1)
or {(+1,-1}

It turns ouc that there is a way of measuring
changes in gradients using 2 single processing step.
The receptive fields for doing this have profiles.of
either (~1,+2,-1) or (+1,~2,+1). We how cxp]am
why- this worls.

Ata point where the gradient in the image.
intensity profile changes, the gradient ta the right
of the point is different from the gradi'cnt to the
lefe. This §s illustrated in 5.13 for 2 point labeled
V. So if we measure the gradient to the left and
stbtracefiomi it the-gradient to the right we obtain
a-measure of their difference and hence 4 measure
of the second derivative.

An easy way fo do this in a single-step convo-.
lution is to use a receprive field buile up in the

'.Edll'ow.in_g way:
v | Point Vis where the 2nd
derivative is being-measured
-1 +1 Gradiéntto the left of ¥
~1 +1 Gradient 16 the right of V for
subtraction
-1 +2 -1 | Resulting receptive field

Beware a'possible confusion ar this point: In the
middle column of the table the subtraction can
be written as.+1 minus (~1) = +2. Recollect that a
rule of arithmetic is that “two minuses givea plus.”
That'is; doing the minus opeiation twice over
yields a plus. Thus, minus.(-1) becomes +1, and
this is why the answer is-+2.

"The result of applying this réceéptive field to
the interisity profilé in 5:11a is shown in 5.11¢;

found by applying the (-1, +1) receptive field rwice

“ent change in the image. We will have more to say

‘in asingle procc"ssing step: This could explain why

sorts of fields.

-extended to cope with two dimensional images?

it sensitive'to "graﬂiem's in one .p'ar[icu'l:ir orienta-.

Gradient to the
leftof V

.
@
o))
o

D
=
g

7-1

w right of V

. }
(PPN DU IV,

o

see table _o;j

+
N

) b

5.13'Receptive field of( 1,+2,-1) type measures
changes of gradient o

This figure should be studied in-conjunction with the assogi-
ated table shown opposite.

in which the zero crossings mark-points of gradi-

about zero crossings as edge location markers in
Gh6.

The, same simple arithmetic can be used to-de-
rive the (+1,-2; +1) weighting profile by subtract-
ing neighboring pairs of (+1,-1) fields.

“The conclusion we have thus come o is: con-
volving with a (-1,+2,-1) or (+1,~2,+1) receptive.
field is a neat way of getting the second derivative.

many: cellsin biclogical vision systems have these

Two-Dimensional Convolutions

For purposes of exposition, only a one-dimerni-
sional slice of an image intensity profile has been'
considered so far. However, 2 visual image is usu-
ally a two~dimensional array of inteusities, So-how
can the receptive field profiles justdescribed can be

A straightforward way to do this is to keep the
receprive field functionally a 1D device by making:
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4 Oriented receptive fields for measuring directional derivatives
with different orieritations are shown together with the. prof‘ iles across them in the directions:shown with the dashed
that are perpendicular to field orientation. a 1st derivatives; b 2nd derivatives.
Note the similarify of these fields to:those of the simple cells described in-Ch 3.

on only. This is'done by the simple expedient of
igating each receptive field, 5.14. In this case
& operators are said to. provide directional de-
atives because the derivative is tied:to a particu-
rorientation.

Having read Ch 3, you may recogrize how these
tended one-dimensional receptive fields bear a
fong resemblance to.the receptive fields of some

the siniple cells found in the striate cortex of cats

d monkeys by Hubel and Wiesel. This similarity
akes ir tempting to suggest that simple cells really

re devices for delivering directional derivatives. If
_'1s is so, gradlent measurements would. need to
e-sampled in a fairly large number of different ori-
ntations at each point in the image, This may not
great handicap for the brain because it has lors
£ arientation tuned cells {(more details:on these in
h9).
“The idea. thar the receptive fields of simple cells,
can be interpreted as providing oriented second
lerivatives.shows how far we have come from
3. There we discussed simple cells as candidates

“bar detectors.” Careful examination of the task

edge detection has hugely refined our under-
tanding of what these cells might be-doing. This is

ine example of the benefits thar can come from
ask analysis.at the computational theory level.

That said, it isalso impottant to note that

whether simple cells really are best thought of as

delivering dirccrional derivatives is still an open
question. We know too litde about brain mecha-
nisms to be sure at present. Even: so, some believe
it to be the cutrent “best bet” for the funciional
role of at least some types of simple cells.

Measuring the image Gradients Using an
iIsotropic Receptive Field

Is it possible to measure the first and second deriv-
atives {i.e., image intensity gradients and changes
in image geadients, respectively) in two-dimen-
sional images without using otiented receptive
fields? That is, can two-dimensional receptive fields
be constructed for measuring derivatives that are
sensitive to image intensity changes irrespective of
their orientations? The technical term for describ-

ing.any process that is the same in all directions-is
‘isotropic (iso = équal; tropia = direction).

It turns-cur that the first derivative cannor be
measured with an isotropic receptive field but
this can be done for the second derivative using a
laplacian receptive field, 5.15a. You can think of
this receprive field as being created by spinning a
{~1,+2,-1) set of weights around its center. We
will see in Ch 6 thac this: type of receptive field is

similar to those possessed by the certain cells in the

rétina, 5.16. This will prove important when we
consider what certain retinal cells seerri-to be'doing

and how they feed into brain cells.
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1 - & :
1 1 Réceptivefield

- 1'. +8 - ‘}::

B 15'-'Lﬁ#]acian receptive field §.17 Combining a set of isotropic gradient measure-
.aA 3x3.array of weights that can be thought of as a ments-to credte-a cell signalling an orientation-tuned
:.comblnatlon offour (~1,+2, -1} i elds, one.each for vertical, second derivative _
horizontal and the two obliques directions. The ¢ircularly symmetiic fields measure changes of gradi-
i'b A simifar combination of four {+1, .2 +1) fields, produgc- ent'in slightly different positions on the image. When their
ing a receptive fisld with opposite signs fo those shown in oltputs are fed into ceff A then this cell has-a oriented re-
a. ceptive. field of the kind possessed by Some simple célls.
c:and d Respectively; on-center-and off-center circularly celf A can thus be regarded as an operator, :mpIementlng a
symmetnc receptive fields of the antagonistic ceriter- figural grouping process that links edge. points: see ch7
s_urround kind found in many biologica! visual systems. for details. This is different way of interpreting what simple
Their qualitative resembiance to the laplacian fields iri a cells may be doing.
and b is striking. We discuss in.detail receptive fields of L T
this iype In Ch 6, on the retina. Ivis easy to.compute directional derivarives from
isotropic gradient measurements. This is done-
simply by combining the outputs of circularly
symmetric (isotropic) receptive fields dealing with

suitably located nearby image points. Ad example
is shown in 5.17. One way of looking ar this isasa .
Jigural grouping operation which links together-edge
points thac form an edge with a certain orientation

(details.in. Ch 7).

Skip from Here to.Summary Remarks?

Readers who do not want technical details on how
to.combine blurring with measuring image gradi-
ents can-move on to the Summary of this chapter
on p. 132, and then on to Ch.6,

5.16.Circularly symmetric receptive field
This field is resgonsive to edges:of all orientations, as dem:
onstratéd in detaii in Ch 6:
a 30 picture of the response profile of an on-center recep-
tive field. Fields of this kind are informally.called-Mexican hat
receptive fields because of their similarity to the cross-sec-

. Refinal  tionalshape of a classic-form of Mexican head wear.

\/ 7 location b Explanation. of the profiles- shown in a. The graph rises

Excitation

8 above: the horizontal “zero response” line: when excitatory

k=) influences arising from light falling on to- the field's ‘center

g-' exceeds’ inhibitory oies arising from light falhng on the
J -surround. .
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