
1
Introduction

1.1	Models	and	Theories	in	Science

Cognitive	scientists	seek	to	understand	how	the	mind	works.	That	is,	we	want	to	describe	and
predict	people’s	behavior,	and	we	ultimately	wish	to	explain	it,	in	the	same	way	that	physicists
predict	the	motion	of	an	apple	that	is	dislodged	from	its	tree	(and	can	accurately	describe	its
downward	path)	and	explain	its	trajectory	(by	appealing	to	gravity).	For	example,	if	you	forget
someone’s	name	when	you	are	distracted	seconds	after	being	introduced	to	her,	we	would	like
to	 know	 what	 cognitive	 process	 is	 responsible	 for	 this	 failure.	 Was	 it	 lack	 of	 attention?
Forgetting	 over	 time?	 Can	 we	 know	 ahead	 of	 time	 whether	 or	 not	 you	 will	 remember	 that
person’s	name?
The	central	thesis	of	this	book	is	that	to	answer	questions	such	as	these,	cognitive	scientists

must	 rely	on	quantitative	mathematical	models,	 just	 like	physicists	who	research	gravity.	We
suggest	that	to	expand	our	knowledge	of	the	human	mind,	consideration	of	the	data	and	verbal
theorizing	are	insufficient	on	their	own.
This	thesis	is	best	illustrated	by	considering	something	that	is	(just	a	little)	simpler	and	more

readily	understood	than	the	mind.	Have	a	look	at	the	data	shown	in	Figure	1.1,	which	represent
the	position	of	planets	in	the	night	sky	over	time.
How	might	one	describe	 this	peculiar	pattern	of	motion?	How	would	you	explain	 it?	The

strange	loops	in	 the	otherwise	consistently	curvilinear	paths	describe	the	famous	“retrograde
motion”	of	the	planets—that	is,	their	propensity	to	suddenly	reverse	direction	(viewed	against
the	fixed	background	of	stars)	for	some	time	before	resuming	their	initial	path.	What	explains
retrograde	motion?	It	took	more	than	a	thousand	years	for	a	satisfactory	answer	to	that	question
to	 become	 available,	 when	 Copernicus	 replaced	 the	 geocentric	 Ptolemaic	 system	 with	 a
heliocentric	model:	Today,	we	know	that	retrograde	motion	arises	from	the	fact	that	the	planets
travel	at	different	speeds	along	their	orbits;	hence,	as	Earth	“overtakes”	Mars,	for	example,	the
red	planet	will	appear	to	reverse	direction	as	it	falls	behind	the	speeding	Earth.
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Figure	1.1	An	example	of	data	that	defy	easy	description	and	explanation	without	a	quantitative	model.

This	example	permits	several	conclusions	that	will	be	relevant	throughout	the	remainder	of
this	 book.	 First,	 the	 pattern	 of	 data	 shown	 in	 Figure	 1.1	 defies	 description	 and	 explanation
unless	one	has	a	model	of	the	underlying	process.	It	is	only	with	the	aid	of	a	model	that	one	can
describe	 and	 explain	 planetary	 motion,	 even	 at	 a	 verbal	 level	 (readers	 who	 doubt	 this
conclusion	may	wish	to	invite	friends	or	colleagues	to	make	sense	of	the	data	without	knowing
their	source).
Second,	 any	 model	 that	 explains	 the	 data	 is	 itself	 unobservable.	 That	 is,	 although	 the

Copernican	 model	 is	 readily	 communicated	 and	 represented	 (so	 readily,	 in	 fact,	 that	 we
decided	to	omit	the	standard	figure	showing	a	set	of	concentric	circles),	it	cannot	be	directly
observed.	 Instead,	 the	model	 is	 an	 abstract	 explanatory	device	 that	 “exists”	primarily	 in	 the
minds	of	the	people	who	use	it	to	describe,	predict,	and	explain	the	data.
Third,	 there	nearly	 always	 are	 several	 possible	models	 that	 can	 explain	 a	given	data	 set.

This	 point	 is	 worth	 exploring	 in	 a	 bit	 more	 detail.	 The	 overwhelming	 success	 of	 the
heliocentric	model	 often	 obscures	 the	 fact	 that,	 at	 the	 time	 of	Copernicus’s	 discovery,	 there
existed	a	moderately	successful	alternative—namely,	the	geocentric	model	of	Ptolemy	shown
in	Figure	1.2.	The	model	explained	retrograde	motion	by	postulating	that	while	orbiting	around
the	Earth,	the	planets	also	circle	around	a	point	along	their	orbit.	On	the	additional,	arguably
somewhat	inelegant,	assumption	that	the	Earth	is	slightly	offset	from	the	center	of	the	planets’
orbit,	 this	 model	 provides	 a	 reasonable	 account	 of	 the	 data,	 limiting	 the	 positional
discrepancies	between	predicted	and	actual	locations	of,	say,	Mars	to	about	1°	(Hoyle,	1974).
Why,	then,	did	the	heliocentric	model	so	rapidly	and	thoroughly	replace	the	Ptolemaic	system?1
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Figure	1.2	 The	 geocentric	model	 of	 the	 solar	 system	developed	 by	Ptolemy.	 It	was	 the	 predominant	model	 for	 some	1,300
years.

The	 answer	 to	 this	 question	 is	 quite	 fascinating	 and	 requires	 that	 we	 move	 toward	 a
quantitative	level	of	modeling.

1.2	Why	Quantitative	Modeling?

Conventional	wisdom	holds	that	the	Copernican	model	replaced	geocentric	notions	of	the	solar
system	because	it	provided	a	better	account	of	the	data.But	what	does	“better”	mean?	Surely	it
means	that	the	Copernican	system	predicted	the	motion	of	planets	with	less	quantitative	error
—that	 is,	 less	 than	 the	 1°	 error	 for	 Mars	 just	 mentioned—than	 its	 Ptolemaic	 counterpart?
Intriguingly,	 this	 conventional	 wisdom	 is	 only	 partially	 correct:	 Yes,	 the	 Copernican	model
predicted	 the	 planets’	motion	 in	 latitude	better	 than	 the	Ptolemaic	 theory,	 but	 this	 difference
was	slight	compared	 to	 the	overall	success	of	both	models	 in	predicting	motion	 in	 longitude
(Hoyle,	1974).	What	gave	Copernicus	the	edge,	then,	was	not	“goodness	of	fit”	alone2	but	also
the	intrinsic	elegance	and	simplicity	of	his	model—compare	the	Copernican	account	by	a	set	of
concentric	 circles	with	 the	 complexity	 of	 Figure	 1.2,	which	 only	 describes	 the	motion	 of	 a
single	planet.
There	 is	 an	 important	 lesson	 to	 be	 drawn	 from	 this	 fact:	 The	 choice	 among	 competing

models—and	 remember,	 there	 are	 always	 several	 to	 choose	 from—inevitably	 involves	 an
intellectual	 judgment	 in	 addition	 to	 quantitative	 examination.	 Of	 course,	 the	 quantitative
performance	of	 a	model	 is	 at	 least	 as	 important	 as	 are	 its	 intellectual	 attributes.	Copernicus
would	not	be	commemorated	today	had	the	predictions	of	his	model	been	inferior	to	those	of
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Ptolemy;	 it	 was	 only	 because	 the	 two	 competing	 models	 were	 on	 an	 essentially	 equal
quantitative	footing	that	other	intellectual	judgments,	such	as	a	preference	for	simplicity	over
complexity,	came	into	play.
If	 the	 Ptolemaic	 and	Copernican	models	were	 quantitatively	 comparable,	why	 do	we	 use

them	 to	 illustrate	 our	 central	 thesis	 that	 a	 purely	 verbal	 level	 of	 explanation	 for	 natural
phenomena	is	insufficient	and	that	all	sciences	must	seek	explanations	at	a	quantitative	level?
The	 answer	 is	 contained	 in	 the	 crucial	 modification	 to	 the	 heliocentric	 model	 offered	 by
Johannes	Kepler	nearly	a	century	later.	Kepler	replaced	the	circular	orbits	in	the	Copernican
model	by	ellipses	with	differing	eccentricities	(or	“egg-shapedness”)	for	the	various	planets.
By	 this	 straightforward	mathematical	modification,	Kepler	achieved	a	virtually	perfect	 fit	of
the	heliocentric	model	with	near-zero	quantitative	error.	There	no	longer	was	any	appreciable
quantitative	discrepancy	between	 the	model’s	predictions	and	 the	observed	paths	of	planets.
Kepler’s	model	has	remained	in	force	essentially	unchanged	for	more	than	four	centuries.
The	acceptance	of	Kepler’s	model	permits	two	related	conclusions,	one	that	is	obvious	and

one	that	is	equally	important	but	perhaps	less	obvious.	First,	if	two	models	are	equally	simple
and	 elegant	 (or	 nearly	 so),	 the	 one	 that	 provides	 the	 better	 quantitative	 account	 will	 be
preferred.	 Second,	 the	 predictions	 of	 the	 Copernican	 and	 Keplerian	 models	 cannot	 be
differentiated	by	verbal	interpretation	alone.	Both	models	explain	retrograde	motion	by	the	fact
that	Earth	“over-takes”	some	planets	during	its	orbit,	and	the	differentiating	feature	of	the	two
models—whether	 orbits	 are	 presumed	 to	 be	 circular	 or	 elliptical—does	 not	 entail	 any
differences	in	predictions	that	can	be	appreciated	by	purely	verbal	analysis.	That	is,	although
one	can	talk	about	circles	and	ellipses	(e.g.,	“one	is	round,	the	other	one	egg	shaped”),	those
verbalizations	cannot	be	turned	into	testable	predictions:	Remember,	Kepler	reduced	the	error
for	Mars	 from	 1°	 to	 virtually	 zero,	 and	 we	 challenge	 you	 to	 achieve	 this	 by	 verbal	means
alone.
Let	us	summarize	the	points	we	have	made	so	far:	

1.	 Data	 never	 speak	 for	 themselves	 but	 require	 a	 model	 to	 be	 understood	 and	 to	 be
explained.

2.	 Verbal	theorizing	alone	ultimately	cannot	substitute	for	quantitative	analysis.
3.	 There	are	always	several	alternative	models	that	vie	for	explanation	of	data,	and	we	must

select	among	them.
4.	 Model	 selection	 rests	 on	 both	 quantitative	 evaluation	 and	 intellectual	 and	 scholarly

judgment.
	
All	of	these	points	will	be	explored	in	the	remainder	of	this	book.	We	next	turn	our	attention

from	 the	 night	 sky	 to	 the	 inner	 workings	 of	 our	 mind,	 first	 by	 showing	 that	 the	 preceding
conclusions	 apply	 in	 full	 force	 to	 cognitive	 scientists	 and	 then	 by	 considering	 an	 additional
issue	that	is	of	particular	concern	to	scholars	of	the	human	mind.

1.3	Quantitative	Modeling	in	Cognition
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1.3.1	Models	and	Data

Let’s	 try	 this	 again:	Have	 a	 look	 at	 the	 data	 in	Figure	1.3.	Does	 it	 remind	 you	 of	 planetary
motion?	 Probably	 not,	 but	 it	 should	 be	 at	 least	 equally	 challenging	 to	 discern	 a	meaningful
pattern	 in	 this	 case	 at	 it	 was	 in	 the	 earlier	 example.	 Perhaps	 the	 pattern	 will	 become
recognizable	 if	we	 tell	you	about	 the	experiment	conducted	by	Nosofsky	 (1991)	 from	which
these	data	are	taken.	In	that	experiment,	people	were	trained	to	classify	a	small	set	of	cartoon
faces	 into	 two	arbitrary	categories	 (we	might	call	 them	 the	Campbells	and	 the	MacDonalds,
and	members	of	the	two	categories	might	differ	on	a	set	of	facial	features	such	as	length	of	nose
and	eye	separation).
On	a	 subsequent	 transfer	 test,	people	were	presented	with	a	 larger	 set	of	 faces,	 including

those	used	at	training	plus	a	set	of	new	ones.	For	each	face,	people	had	to	make	two	decisions:
which	 category	 the	 face	 belonged	 to	 and	 the	 confidence	 of	 that	 decision	 (called
“classification”	 in	 the	 figure,	 shown	 on	 the	 x-axis),	 and	 whether	 or	 not	 it	 had	 been	 shown
during	 training	 (“recognition,”	 on	 the	y-axis).	 Each	 data	 point	 in	 the	 figure,	 then,	 represents
those	two	responses,	averaged	across	participants,	for	a	given	face	(identified	by	ID	number,
which	can	be	safely	ignored).	The	correlation	between	those	two	measures	was	found	to	be	r	=
.36.

Figure	1.3	Observed	recognition	scores	as	a	function	of	observed	classification	confidence	for	the	same	stimuli	(each	number
identifies	a	unique	stimulus).	See	text	for	details.	Figure	reprinted	from	Nosofsky,	R.	M.	(1991).	Tests	of	an	exemplar	mode	for
relating	 perceptual	 classification	 and	 recognition	 memory.	 Journal	 of	 Experimental	 Psychology:	 Human	 Perception	 and
Performance,	17,	3–27.	Published	by	the	American	Psychological	Association;	reprinted	with	permission.

Before	we	move	on,	see	if	you	can	draw	some	conclusions	from	the	pattern	in	Figure	1.3.
Do	 you	 think	 that	 the	 two	 tasks	 have	much	 to	 do	with	 each	 other?	Or	would	 you	 think	 that
classification	and	recognition	are	largely	unrelated	and	that	knowledge	of	one	response	would
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tell	you	very	little	about	what	response	to	expect	on	the	other	task?	After	all,	if	r	=	.36,	 then
knowledge	of	one	response	reduces	uncertainty	about	the	other	one	by	only	13%,	leaving	a	full
87%	unexplained,	right?
Wrong.	There	is	at	least	one	quantitative	cognitive	model	(called	the	GCM	and	described	a

little	later),	which	can	relate	those	two	types	of	responses	with	considerable	certainty.	This	is
shown	 in	 Figure	 1.4,	 which	 separates	 classification	 and	 recognition	 judgments	 into	 two
separate	panels,	each	showing	the	relationship	between	observed	responses	(on	the	y-axis)	and
the	predictions	of	 the	GCM	(x-axis).	To	 clarify,	 each	point	 in	Figure	1.3	 is	 shown	 twice	 in
Figure	 1.4—once	 in	 each	 panel	 and	 in	 each	 instance	 plotted	 as	 a	 function	 of	 the	 predicted
response	obtained	from	the	model.

Figure	 1.4	 Observed	 and	 predicted	 classification	 (left	 panel)	 and	 recognition	 (right	 panel).	 Predictions	 are	 provided	 by	 the
GCM;	see	text	for	details.	Perfect	prediction	is	represented	by	the	diagonal	lines.	Figure	reprinted	from	Nosofsky,	R.	M.	(1991).
Tests	 of	 an	 exemplar	 mode	 for	 relating	 perceptual	 classification	 and	 recognition	 memory.	 Journal	 of	 Experimental
Psychology:	 Human	 Perception	 and	 Performance,	 17,	 3–27.	 Published	 by	 the	 American	 Psychological	 Association;
reprinted	with	permission.

The	precision	of	predictions	 in	each	panel	 is	 remarkable:	 If	 the	model’s	predictions	were
absolutely	100%	perfect,	then	all	points	would	fall	on	the	diagonal.	They	do	not,	but	they	come
close	 (accounting	 for	 96%	 and	 91%	 of	 the	 variance	 in	 classification	 and	 recognition,
respectively).	The	fact	that	these	accurate	predictions	were	provided	by	the	same	model	tells
us	 that	 classification	 and	 recognition	 can	 be	 understood	 and	 related	 to	 each	 other	 within	 a
common	 psychological	 theory.	 Thus,	 notwithstanding	 the	 low	 correlation	 between	 the	 two
measures,	 there	 is	an	underlying	model	 that	explains	how	both	 tasks	are	 related	and	permits
accurate	prediction	of	one	response	from	knowledge	of	the	other.	This	model	will	be	presented
in	detail	later	in	this	chapter	(Section	1.4.4);	for	now,	it	suffices	to	acknowledge	that	the	model
relies	on	the	comparison	between	each	test	stimulus	and	all	previously	encountered	exemplars
in	memory.
The	two	figures	enforce	a	compelling	conclusion:	“The	initial	scatterplot	…	revealed	little

relation	between	classification	and	recognition	performance.	At	that	limited	level	of	analysis,
one	might	have	concluded	that	there	was	little	in	common	between	the	fundamental	processes
of	classification	and	recognition.	Under	the	guidance	of	the	formal	model,	however,	a	unified
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account	 of	 these	 processes	 is	 achieved”	 (Nosofsky,	 1991,	 p.	 9).	 Exactly	 paralleling	 the
developments	in	16th-century	astronomy,	data	in	contemporary	psychology	are	ultimately	only
fully	 interpretable	with	 the	 aid	 of	 a	 quantitative	model.	We	 can	 thus	 reiterate	 our	 first	 two
conclusions	 from	 above	 and	 confirm	 that	 they	 apply	 to	 cognitive	 psychology	 in	 full	 force—
namely,	that	data	never	speak	for	themselves	but	require	a	model	to	be	understood	and	to	be
explained	and	 that	verbal	 theorizing	alone	cannot	 substitute	 for	quantitative	analysis.	 But
what	about	the	remaining	earlier	conclusions	concerning	model	selection?
Nosofsky’s	(1991)	modeling	included	a	comparison	between	his	favored	exemplar	model,

whose	predictions	are	shown	in	Figure	1.4,	and	an	alternative	“prototype”	model.	The	details
of	the	two	models	are	not	relevant	here;	it	suffices	to	note	that	the	prototype	model	compares	a
test	 stimulus	 to	 the	average	 of	 all	 previously	 encountered	 exemplars,	whereas	 the	 exemplar
model	performs	the	comparison	one	by	one	between	the	test	stimulus	and	each	exemplar	and
sums	the	result.3	Nosofsky	found	that	the	prototype	model	provided	a	less	satisfactory	account
of	 the	 data,	 explaining	 only	 92%	 and	 87%	 of	 the	 classification	 and	 recognition	 variance,
respectively,	or	about	5%	less	than	the	exemplar	model.	Hence,	the	earlier	conclusions	about
model	selection	apply	in	this	instance	as	well:	There	were	several	alternative	models,	and	the
choice	between	them	was	based	on	clear	quantitative	criteria.

1.3.2	From	Ideas	to	Models

So	far,	we	initiated	our	discussions	with	the	data	and	we	then	…poof!…revealed	a	quantitative
model	that	spectacularly	turned	an	empirical	mystery	or	mess	into	theoretical	currency.	Let	us
now	invert	 this	process	and	begin	with	an	idea,	 that	 is,	some	psychological	process	 that	you
think	might	 be	worthy	 of	 exploration	 and	 perhaps	 even	 empirical	 test.	 Needless	 to	 say,	we
expect	 you	 to	 convert	 this	 idea	 into	 a	 quantitative	model.	 This	 raises	 at	 least	 two	 obvious
questions:	 First,	 how	 would	 one	 do	 this?	 Second,	 does	 this	 process	 have	 implications
concerning	the	role	of	modeling	other	than	those	we	have	already	discussed?	These	questions
are	sufficiently	complex	to	warrant	their	own	chapter	(Chapter	2),	although	we	briefly	survey
the	latter	here.
Consider	the	simple	and	elegant	notion	of	rehearsal,	which	is	at	the	heart	of	much	theorizing

in	cognition	(e.g.,	A.	D.	Baddeley,	2003).	We	have	all	engaged	in	rehearsal,	for	example,	when
we	try	to	retain	a	phone	number	long	enough	to	enter	it	into	our	SIM	cards.	Several	theorists
believe	that	such	subvocal—or	sometimes	overt—rehearsal	can	prevent	the	“decay”	of	verbal
short-term	 memory	 traces,	 and	 introspection	 suggests	 that	 repeated	 recitation	 of	 a	 phone
number	 is	 a	 good	means	 to	 avoid	 forgetting.	Perhaps	 because	 of	 the	 overwhelming	 intuitive
appeal	of	the	notion	and	its	introspective	reality,	there	have	been	few	if	any	attempts	to	embody
rehearsal	in	a	computational	model.	It	 is	 therefore	of	some	interest	 that	one	recent	attempt	to
explicitly	model	 rehearsal	 (Oberauer	&	 Lewandowsky,	 2008)	 found	 it	 to	 be	 detrimental	 to
memory	performance	under	many	circumstances	 rather	 than	beneficial.	Specifically,	 because
rehearsal	necessarily	involves	retrieval	from	memory—how	else	would	an	item	be	articulated
if	 not	 by	 retrieving	 it	 from	memory?—it	 is	 subject	 to	 the	 same	 vagaries	 that	 beset	memory
retrieval	during	regular	 recall.	 In	consequence,	 repeated	rehearsal	 is	 likely	 to	 first	 introduce
and	 then	 compound	 retrieval	 errors,	 such	 as	 ordinal	 transpositions	 of	 list	 items,	 thus	 likely
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offsetting	any	benefit	that	might	be	derived	from	restoring	the	strength	of	rehearsed	information.
Oberauer	and	Lewandowsky	(2008)	found	that	the	exact	consequences	of	rehearsal	depended
on	 circumstances—in	 a	 small	 number	 of	 specific	 conditions,	 rehearsal	 was	 beneficial—but
this	only	amplifies	the	point	we	are	making	here:	Even	intuitively	attractive	notions	may	fail	to
provide	the	desired	explanation	for	behavior	once	subjected	to	the	rigorous	analysis	required
by	 a	 computational	 model.4	 As	 noted	 by	 Fum,	 Del	 Missier,	 and	 Stocco	 (2007),	 “Verbally
expressed	statements	are	sometimes	flawed	by	internal	inconsistencies,	logical	contradictions,
theoretical	weaknesses	 and	gaps.	A	 running	 computational	model,	 on	 the	 other	 hand,	 can	be
considered	as	a	sufficiency	proof	of	the	internal	coherence	and	completeness	of	the	ideas	it	is
based	upon”	(p.	136).	In	Chapter	2,	we	further	explore	this	notion	and	the	mechanics	of	model
development	by	developing	a	computational	instantiation	of	Baddeley’s	(e.g.,	2003)	rehearsal
model.
Examples	 that	 underscore	 the	 theoretical	 rigor	 afforded	 by	 quantitative	 models	 abound:

Lewandowsky	(1993)	reviewed	one	example	in	detail	that	involved	construction	of	a	model	of
word	 recognition.	Shiffrin	and	Nobel	 (1997)	described	 the	 long	and	 informative	behind-the-
scenes	history	of	the	development	of	a	model	of	episodic	recognition.
Finally,	theoreticians	who	ignore	the	rigor	of	quantitative	modeling	do	so	at	their	own	peril.

Hunt	 (2007)	 relates	 the	 tale	 of	 the	 17th-century	Swedish	 king	 and	 his	 desire	 to	 add	 another
deck	of	guns	to	the	Vasa,	 the	stupendous	new	flagship	of	his	fleet.	What	the	king	wanted,	 the
king	 got,	 and	 the	 results	 are	 history:	The	Vasa	 set	 sail	 on	 her	maiden	 voyage	 and	 remained
proudly	upright	for,	well,	nearly	half	an	hour	before	capsizing	and	sinking	in	Stockholm	harbor.
Lest	 one	 think	 that	 such	 follies	 are	 the	 preserve	 of	 heads	 of	 state,	 consider	 the	 claim	 in	 a
textbook	on	learning:	“While	adultery	rates	for	men	and	women	may	be	equalizing,	men	still
have	more	 partners	 than	women	 do,	 and	 they	 are	more	 likely	 to	 have	 one-night	 stands;	 the
roving	male	seeks	sex,	the	female	is	looking	for	a	better	partner”	(Leahey	&	Harris,	1989,	pp.
317–318).	Hintzman	(1991)	issued	a	challenge	to	set	up	a	model	consistent	with	this	claim—
that	is,	“there	must	be	equal	numbers	of	men	and	women,	but	men	must	have	more	heterosexual
partners	than	women	do”	(p.	41).	Needless	to	say,	the	challenge	has	not	been	met	because	the
claim	 is	mathematically	 impossible;	 the	 obvious	 lesson	here	 is	 that	 verbal	 theories	may	 not
only	be	difficult	to	implement,	as	shown	by	Oberauer	and	Lewandowsky	(2008),	but	may	even
turn	out	to	be	scientifically	untenable.

1.3.3	Summary

We	conclude	this	section	by	summarizing	our	main	conclusions:
	

1.	 Data	 never	 speak	 for	 themselves	 but	 require	 a	 model	 to	 be	 understood	 and	 to	 be
explained.

2.	 Verbal	theorizing	alone	cannot	substitute	for	quantitative	analysis.
3.	 There	are	always	several	alternative	models	that	vie	for	explanation	of	data,	and	we	must

compare	those	alternatives.
4.	 Model	 comparison	 rests	 on	 both	 quantitative	 evaluation	 and	 intellectual	 and	 scholarly
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judgment.
5.	 Even	seemingly	intuitive	verbal	theories	can	turn	out	to	be	incoherent	or	ill-specified.
6.	 Only	 instantiation	 in	 a	quantitative	model	 ensures	 that	 all	 assumptions	of	 a	 theory	have

been	identified	and	tested.
	

If	 you	 are	 interested	 in	 expanding	 on	 these	 conclusions	 and	 finding	 out	 more	 about
fascinating	aspects	of	modeling,	we	recommend	that	you	consider	the	studies	by	Estes	(1975),
Lewandowsky	(1993),	Lewandowsky	and	Heit	(2006),	Norris	(2005),	and	Ratcliff	(1998).

1.4	The	Ideas	Underlying	Modeling	and	Its	Distinct	Applications

We	 have	 shown	 that	 quantitative	 modeling	 is	 an	 indispensable	 component	 of	 successful
research	in	cognition.	To	make	this	point	without	getting	bogged	down	in	too	many	details,	we
have	so	far	sidestepped	a	number	of	fundamental	 issues.	For	example,	we	have	yet	to	define
what	a	model	actually	is	and	what	common	ground	all	psychological	models	may	share—and,
conversely,	how	they	might	differ.	We	now	take	up	those	foundational	issues.5

1.4.1	Elements	of	Models

What	 exactly	 is	 a	 model,	 anyway?	 At	 its	 most	 basic,	 a	 model	 is	 an	 abstract	 structure	 that
captures	 structure	 in	 the	 data	 (cf.	 Luce,	 1995).	 For	 example,	 a	 good	 model	 for	 the	 set	 of
numbers	 {2,	 3,	 4}	 is	 their	mean—namely,	 3.	 A	 good	model	 for	 the	 relationship	 between	 a
society’s	 happiness	 and	 its	 economic	 wealth	 is	 a	 negatively	 accelerated	 function,	 such	 that
happiness	rises	steeply	as	one	moves	from	poverty	to	a	modest	level	of	economic	security,	but
further	increases	in	happiness	with	increasing	material	wealth	get	smaller	and	smaller	as	one
moves	 to	 the	 richest	 societies	 (Inglehart,	Foa,	Peterson,	&	Welzel,	2008).	Those	models	are
descriptive	 in	nature,	 and	 they	are	 sufficiently	 important	 to	merit	 their	own	 section	 (Section
1.4.2).
Needless	 to	 say,	 scientists	want	 to	 do	more	 than	 describe	 the	 data.	At	 the	 very	 least,	we

want	to	predict	new	observations;	for	example,	we	might	want	to	predict	how	much	happiness
is	 likely	 to	 increase	 if	 we	 manage	 to	 expand	 the	 gross	 national	 product	 by	 another	 zillion
dollars	(if	you	live	in	a	rich	country,	the	answer	is	“not	much”).	In	principle,	any	type	of	model
permits	prediction,	and	although	prediction	is	an	important	part	of	the	scientific	endeavor	(and
probably	 the	only	ability	of	consideration	for	stockbrokers	and	 investment	bankers),	 it	 is	not
the	whole	story.	For	example,	imagine	that	your	next-door	neighbor,	a	car	mechanic	by	trade,
were	able	to	predict	with	uncanny	accuracy	the	outcome	of	every	conceivable	experiment	on
some	aspect	of	human	cognition	(a	scenario	discussed	by	K.	I.	Forster,	1994).	Would	you	be
satisfied	with	this	state	of	affairs?	Would	your	neighbor	be	a	good	model	of	human	cognition?
Clearly	the	answer	is	no;	in	addition	to	robotic	predictions,	you	also	want	an	explanation	 for
the	phenomena	under	consideration	(Norris,	2005).	Why	does	this	particular	outcome	obtain	in
that	experiment	rather	than	some	other	result?
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It	 follows	that	most	cognitive	modeling	goes	beyond	mere	description	and	seeks	to	permit
prediction	and	explanation	of	behavior.	The	latter,	explanatory	role	is	the	exclusive	domain	of
models	 that	 we	 refer	 to	 as	 providing	 a	 process	 characterization	 and	 process	 explanation,
respectively.
When	models	 are	used	as	 an	explanatory	device,	one	other	 attribute	becomes	particularly

relevant:	Models	are	intended	to	be	simpler	and	more	abstract	versions	of	the	system—in	our
case,	human	cognition—they	are	trying	to	explain	(Fum	et	al.,	2007).	Models	seek	to	retain	the
essential	 features	 of	 the	 system	 while	 discarding	 unnecessary	 details.	 By	 definition,	 the
complexity	of	models	will	thus	never	match	the	complexity	of	human	cognition–and	nor	should
it,	because	there	is	no	point	in	replacing	one	thing	we	do	not	understand	with	another	(Norris,
2005).

1.4.2	Data	Description

Knowingly	or	not,	we	have	all	used	models	to	describe	or	summarize	data,	and	at	first	glance,
this	appears	quite	straightforward.	For	example,	we	probably	would	not	hesitate	 to	describe
the	salaries	of	all	150	members	of	 the	Australian	House	of	Representatives	by	 their	average
because	 in	 this	 case,	 there	 is	 little	 doubt	 that	 the	 mean	 is	 the	 proper	 “model”	 of	 the	 data
(notwithstanding	 the	 extra	 allowances	 bestowed	 upon	 ministers).	 Why	 would	 we	 want	 to
“model”	 the	 data	 in	 this	 way?	 Because	 we	 are	 replacing	 the	 data	 points	 (N	 =	 150	 in	 this
instance)	with	 a	 single	 estimated	“parameter.”6	 In	 this	 instance,	 the	 parameter	 is	 the	 sample
mean,	and	reducing	150	points	into	one	facilitates	understanding	and	efficient	communication
of	the	data.
However,	we	must	not	become	complacent	in	light	of	the	apparent	ease	with	which	we	can

model	data	by	their	average.	As	a	case	in	point,	consider	U.S.	President	Bush’s	2003	statement
in	promotion	of	his	tax	cut,	that	“under	this	plan,	92	million	Americans	receive	an	average	tax
cut	of	$1,083.”	Although	this	number,	strictly	speaking,	was	not	incorrect,	it	arguably	did	not
represent	the	best	model	of	the	proposed	tax	cut,	given	that	80%	of	taxpayers	would	receive
less	than	this	cut,	and	nearly	half	(i.e.,	some	45	million	people)	would	receive	less	than	$100
(Verzani,	2004).	The	distribution	of	 tax	cuts	was	so	skewed	(bottom	20%	of	 income	earners
slated	to	receive	$6	compared	to	$30,127	for	the	top	1%)	that	the	median	or	a	trimmed	mean
would	have	been	the	preferable	model	of	the	proposed	legislation	in	this	instance.
Controversies	about	 the	proper	model	with	which	 to	describe	data	also	arise	 in	cognitive

science,	 although	 fortunately	 with	 more	 transparency	 and	 less	 disingenuousness	 than	 in	 the
political	scene.	In	fact,	data	description,	by	itself,	can	have	considerable	psychological	impact.
As	a	case	in	point,	consider	the	debate	on	whether	learning	of	a	new	skill	is	best	understood	as
following	a	 “power	 law”	or	 is	 better	described	by	 an	 exponential	 improvement	 (Heathcote,
Brown,	 &	 Mewhort,	 2000).	 There	 is	 no	 doubt	 that	 the	 benefits	 from	 practice	 accrue	 in	 a
nonlinear	 fashion:	The	 first	 time	you	 try	your	hands	at	a	new	skill	 (for	example,	creating	an
Ikebana	arrangement),	things	take	seemingly	forever	(and	the	output	may	not	be	worth	writing
home	 about).	 The	 second	 and	 third	 time	 round,	 you	 will	 notice	 vast	 improvements,	 but
eventually,	 after	 some	 dozens	 of	 trials,	 chances	 are	 that	 all	 further	 improvements	 are	 small
indeed.

Lewandowsky, Stephan, and Simon Farrell. Computational Modeling in Cognition : Principles and Practice, SAGE Publications, 2012. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/jhu/detail.action?docID=1598333.
Created from jhu on 2018-10-07 17:23:10.

C
op

yr
ig

ht
 ©

 2
01

2.
 S

A
G

E
 P

ub
lic

at
io

ns
. A

ll 
rig

ht
s 

re
se

rv
ed

.



What	 is	 the	 exact	 functional	 form	 of	 this	 pervasive	 empirical	 regularity?	 For	 several
decades,	the	prevailing	opinion	had	been	that	the	effect	of	practice	is	best	captured	by	a	power
law—that	is,	by	the	function	(shown	here	in	its	simplest	possible	form),

RT	=	N−β,																	(1.1)

where	RT	represents	the	time	to	perform	the	task,	N	represents	the	number	of	learning	trials	to
date,	and	β	 is	 the	 learning	 rate.	Figure	1.5	 shows	 sample	 data,	 taken	 from	Palmeri’s	 (1997)
Experiment	3,	with	the	appropriate	best-fitting	power	function	superimposed	as	a	dashed	line.

Figure	1.5	Sample	power	law	learning	function	(dashed	line)	and	alternative	exponential	function	(solid	line)	fitted	to	the	same
data.	Data	are	represented	by	dots	and	are	taken	from	Palmeri’s	(1997)	Experiment	3	(Subject	3,	Pattern	13).	To	fit	the	data,
the	 power	 and	 exponential	 functions	 were	 a	 bit	 more	 complex	 than	 described	 in	 Equations	 1.1	 and	 1.2	 because	 they	 also
contained	an	asymptote	(A)	and	a	multiplier	(B).	Hence,	the	power	function	took	the	form	RT	=	AP	+	BP	×	(N	+	1)

−β,	and	the

exponential	function	was	RT	=	AE	+	BE	×	e
−αN	.

Heathcote	et	al.	(2000)	argued	that	the	data	are	better	described	by	an	exponential	function
given	by	(again	in	its	simplest	possible	form)

RT	=	e−αN,															(1.2)

where	N	is	as	before	and	α	the	learning	rate.	The	best-fitting	exponential	function	is	shown	by
the	solid	line	in	Figure	1.5;	you	will	note	that	the	two	competing	descriptions	or	models	do	not
appear	to	differ	much.	The	power	function	captures	the	data	well,	but	so	does	the	exponential
function,	 and	 there	 is	 not	much	 to	 tell	 between	 them:	 The	 residual	mean	 squared	 deviation
(RMSD),	which	represents	the	average	deviation	of	the	data	points	from	the	predicted	function,
was	482.4	for	the	power	function	compared	to	526.9	for	the	exponential.	Thus,	in	this	instance,
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the	power	function	fits	“better”	(by	providing	some	50	ms	less	error	in	its	predictions	than	the
exponential),	but	given	that	RT’s	range	is	from	somewhere	less	than	1000	ms	to	7	seconds,	this
difference	is	not	particularly	striking.
So,	why	would	 this	 issue	be	of	any	 import?	Granted,	we	wish	 to	describe	 the	data	by	 the

appropriate	 model,	 but	 surely	 neither	 of	 the	 models	 in	 Figure	 1.5	 mis-represents	 essential
features	of	 the	data	anywhere	near	as	much	as	U.S.	President	Bush	did	by	reporting	only	 the
average	 implication	 of	 his	 proposed	 tax	 cut.	 The	 answer	 is	 that	 the	 choice	 of	 the	 correct
descriptive	 model,	 in	 this	 instance,	 carries	 important	 implications	 about	 the	 psychological
nature	of	learning.	As	shown	in	detail	by	Heathcote	et	al.	(2000),	the	mathematical	form	of	the
exponential	function	necessarily	implies	that	 the	learning	rate,	relative	to	what	remains	to	be
learned,	 is	constant	 throughout	practice.	That	 is,	no	matter	how	much	practice	you	have	had,
learning	 continues	 by	 enhancing	 your	 performance	 by	 a	 constant	 fraction.	 By	 contrast,	 the
mathematics	 of	 the	 power	 function	 imply	 that	 the	 relative	 learning	 rate	 is	 slowing	 down	 as
practice	increases.	That	is,	although	you	continue	to	show	improvements	throughout,	the	rate	of
learning	decreases	with	increasing	practice.	It	follows	that	the	proper	characterization	of	skill
acquisition	 data	 by	 a	 descriptive	 model,	 in	 and	 of	 itself,	 has	 considerable	 psychological
implications	 (we	 do	 not	 explore	 those	 implications	 here;	 see	 Heathcote	 et	 al.,	 2000,	 for
pointers	to	the	background).
Just	 to	wrap	up	 this	 example,	Heathcote	 et	 al.	 (2000)	 concluded	after	 reanalyzing	a	 large

body	 of	 existing	 data	 that	 the	 exponential	 function	 provided	 a	 better	 description	 of	 skill
acquisition	than	the	hitherto	presumed	power	law.	For	our	purposes,	their	analysis	permits	the
following	conclusions:	First,	quantitative	description	of	data,	by	itself,	can	have	considerable
psychological	 implications	 because	 it	 prescribes	 crucial	 features	 of	 the	 learning	 process.
Second,	the	example	underscores	the	importance	of	model	selection	that	we	alluded	to	earlier;
in	this	instance,	one	model	was	chosen	over	another	on	the	basis	of	strict	quantitative	criteria.
We	 revisit	 this	 issue	 in	 Chapter	 5.	 Third,	 the	 fact	 that	 Heathcote	 et	 al.’s	 model	 selection
considered	 the	 data	 of	 individual	 subjects,	 rather	 than	 the	 average	 across	 participants,
identifies	 a	new	 issue—namely,	 the	most	 appropriate	way	 in	which	 to	 apply	 a	model	 to	 the
data	from	more	than	one	individual—that	we	consider	in	Chapter	3.
The	selection	among	competing	 functions	 is	not	 limited	 to	 the	effects	of	practice.	Debates

about	the	correct	descriptive	function	have	also	figured	prominently	in	the	study	of	forgetting.
Does	 the	 rate	 of	 forgetting	 differ	with	 the	 extent	 of	 learning?	 Is	 the	 rate	 of	 information	 loss
constant	over	time?	Although	the	complete	pattern	of	results	is	fairly	complex,	two	conclusions
appear	 warranted	 (Wixted,	 2004a):	 First,	 the	 degree	 of	 learning	 does	 not	 affect	 the	 rate	 of
forgetting.	 Hence,	 irrespective	 of	 how	 much	 you	 cram	 for	 an	 exam,	 you	 will	 lose	 the
information	at	the	same	rate—but	of	course	this	is	not	an	argument	against	dedicated	study;	if
you	learn	more,	you	will	also	retain	more,	irrespective	of	the	fact	that	the	rate	of	loss	per	unit
of	time	remains	the	same.	Second,	the	rate	of	forgetting	decelerates	over	time.	That	is,	whereas
you	might	lose	some	30%	of	the	information	on	the	first	day,	on	the	second	day,	the	loss	may	be
down	 to	 20%,	 then	 10%,	 and	 so	 on.	Again,	 as	 in	 the	 case	 of	 practice,	 two	 conclusions	 are
relevant	 here:	 First,	 quantitative	 comparison	 among	 competing	 descriptive	 models	 was
required	to	choose	the	appropriate	function	(it	is	a	power	function,	or	something	very	close	to
it).	 Second,	 although	 the	 shape	of	 the	 “correct”	 function	has	 considerable	 theoretical	 import
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because	 it	may	 imply	 that	memories	 are	 “consolidated”	 over	 time	 after	 study	 (see	Wixted,
2004a,	2004b,	for	a	detailed	consideration,	and	see	G.	D.	A.	Brown	&	Lewandowsky,	2010,
for	a	contrary	view),	the	function	itself	has	no	psychological	content.
The	mere	description	of	data	can	also	have	psychological	implications	when	the	behavior	it

describes	is	contrasted	to	normative	expectations	(Luce,	1995).	Normative	behavior	refers	to
how	people	would	behave	if	they	conformed	to	the	rules	of	logic	or	probability.	For	example,
consider	 the	 following	 syllogism	 involving	 two	premises	 (P)	 and	 a	 conclusion	 (C).	P1:	All
polar	 bears	 are	 animals.	 P2:	 Some	 animals	 are	 white.	 C:	 Therefore,	 some	 polar	 bears	 are
white.	 Is	 this	 argument	 valid?	 There	 is	 a	 75%	 to	 80%	 chance	 that	 you	 might	 endorse	 this
conclusion	(e.g.,	Helsabeck,	1975),	even	though	it	is	logically	false	(to	see	why,	replace	white
with	 brown	 in	 P2	 and	 C).	 This	 example	 shows	 that	 people	 tend	 to	 violate	 normative
expectations	even	in	very	simple	situations.	In	this	instance,	the	only	descriptive	model	that	is
required	 to	 capture	 people’s	 behavior—and	 to	 notice	 the	 normative	 violation—is	 a	 simple
proportion	(i.e.,	.75–.80	of	people	commit	this	logical	error).	In	other,	more	realistic	instances,
people’s	normatively	irrational	behavior	is	best	captured	by	a	rather	more	complex	descriptive
model	(e.g.,	Tversky	&	Kahneman,	1992).
We	 have	 presented	 several	 descriptive	 models	 and	 have	 shown	 how	 they	 can	 inform

psychological	 theorizing.	Before	we	move	on,	 it	 is	 important	 to	 identify	 the	common	threads
among	those	diverse	examples.	One	attribute	of	descriptive	models	is	that	they	are	explicitly
devoid	 of	 psychological	 content;	 for	 example,	 although	 the	 existence	 of	 an	 exponential
practice	 function	 constrains	 possible	 learning	 mechanisms,	 the	 function	 itself	 has	 no
psychological	content.	It	is	merely	concerned	with	describing	the	data.
For	 the	 remainder	 of	 this	 chapter,	 we	will	 be	 considering	models	 that	 have	 increasingly

more	psychological	content.	In	the	next	section,	we	consider	models	that	characterize	cognitive
processes	at	a	highly	abstract	level,	thus	going	beyond	data	description,	but	that	do	not	go	so
far	as	to	explain	those	processes	in	detail.	The	final	section	considers	models	that	go	beyond
characterization	and	explain	the	cognitive	processes.

1.4.3	Process	Characterization

What	does	it	mean	to	characterize	a	cognitive	process?	There	are	two	relevant	attributes:	First,
models	that	characterize	processes	peek	inside	the	“black	box”	that	is	the	mind	and	postulate—
and	then	measure—distinct	cognitive	components.	Unlike	descriptive	models,	their	explanatory
power	 thus	 rests	on	hypothetical	constructs	within	 the	mind	 rather	 than	within	 the	data	 to	be
explained.	 Second,	 these	 models	 do	 not	 go	 beyond	 identification	 of	 those	 constructs	 or
processes;	that	is,	they	remain	neutral	with	respect	to	specific	instantiations	and	explanations
underpinning	 the	 cognitive	 processes	 they	 characterize.	 (Providing	 those	 explanations	 is	 the
domain	of	the	last	class	of	models,	to	be	considered	in	the	next	section.)
We	 illustrate	 this	 class	 of	models	 using	 the	multinomial	 processing	 tree	 (MPT)	 approach

(Batchelder	&	Riefer,	1999;	see	also	Riefer	&	Batchelder,	1988).	The	MPT	approach	makes
the	 uncontroversial	 assumption	 that	 psychological	 data	 often	 result	 from	 multiple	 cognitive
processes	 and	provides	 a	 technique	 to	 disentangle	 and	measure	 the	 relative	 contributions	of
these	 underlying	 processes.	 To	 do	 so,	 an	MPT	 model	 postulates	 a	 sequence	 of	 processing
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stages	and	connects	 them	by	a	variety	of	paths	 that	can	give	 rise	 to	 the	observed	behavioral
outcome.	 While	 this	 may	 sound	 complicated,	 it	 is	 actually	 quite	 simple	 once	 shown
graphically:	 Figure	 1.6	 contains	 a	 multinomial	 processing	 tree	 proposed	 by	 Schweickert
(1993)	to	characterize	recall	from	short-term	memory.
The	model	postulates	two	ways	in	which	recall	can	be	successful:	First,	if	the	information	in

memory	 is	 intact	 (with	 probability	 I	 ),	 then	 the	 item	 is	 recalled	 directly.	 Second,	 if	 the
memorial	 representation	 is	not	 intact	 (probability	1	−	 I	 ),	 then	 an	 item	might	nonetheless	be
“redintegrated”	(with	probability	R).	The	 red-integration	 stage	 refers	 to	 some	 reconstruction
process	 that	 fills	 in	 the	 missing	 bits	 of	 a	 partially	 forgotten	 item	 on	 the	 basis	 of,	 say,
information	 in	 long-term	memory;	 for	 example,	 knowledge	 of	 the	 word	 hippopotamus	 will
enable	you	to	recall	a	memorized	item	even	if	all	you	can	remember	is	something	like	“h_p_	_
_	 _tam_	 _.”	 Only	 if	 redintegration	 also	 fails	 (with	 probability	 1	 −	R),	 then	 recall	 will	 be
unsuccessful.
Let	 us	 trace	 these	 possible	 outcomes	 in	 Figure	 1.6:	 We	 enter	 the	 tree	 at	 the	 top,	 and

depending	on	whether	the	trace	is	intact,	we	branch	right	(with	probability	I)	or	left	(1	−	I	).	In
the	former	case,	the	item	is	recalled,	and	outcome	“C”	(for	“correct”	recall)	is	obtained.	In	the
latter	 case,	 the	 second	 stage	 kicks	 in,	 and	we	 ask	 whether	 the	 item—not	 being	 intact—can
nonetheless	be	successfully	redintegrated	(with	probability	R;	branch	right)	or	not	(1	−	R;	keep
going	left).	In	the	former	case,	we	score	another	correct	response;	in	the	latter,	we	commit	an
error	(E).	The	overall	predictions	of	the	model—for	correct	responses	and	errors,	respectively
—are	thus	given	by	C	=	I	+	(1	−	I)	×	R	and	E	=	(1	−	I)	×	(1	−	R).

Figure	1.6	A	simple	multinomial	processing	tree	model	proposed	by	Schweickert	(1993)	for	recall	from	short-term	memory.

You	are	 likely	 to	ask	at	 least	 two	questions	at	 this	point:	First,	why	are	 those	components
multiplied	together,	and	second,	how	do	we	know	what	the	values	are	of	I	and	R?
The	 former	 question	 is	 answered	 by	 noting	 that	 each	 branch	 in	 the	 tree	 builds	 on	 the

previous	one;	that	is,	redintegration	(R)	only	takes	place	if	the	item	was	not	intact	(1	−	I	)	in	the
first	 place.	 Because	 the	 two	 stages	 are	 assumed	 to	 be	 independent,	 their	 probabilities	 of
occurrence	 are	 multiplied	 together	 (for	 further	 discussion,	 see	 first	 part	 of	 Chapter	 4).	 It
follows	that	one	possible	way	in	which	a	response	may	be	correct,	via	the	path	left-right,	 is
given	by	(1	−	I	)	×	R.	This	outcome	is	then	added	to	the	other	way	in	which	one	can	be	correct,
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along	the	simple	path	right,	which	is	given	by	I	.	Analogously,	an	error	can	only	occur	via	the
path	left-left,	which	is	thus	given	by	(1	−	I	)	×	(1	−	R).
The	 latter	 question,	 concerning	 the	 values	 of	 I	 and	R,	 has	 both	 a	 simple	 and	 also	 a	 very

involved	answer.	The	simple	answer	is	that	those	quantities	are	parameters	that	are	estimated
from	the	data,	similar	to	the	way	in	which	we	compute	a	sample	mean	to	estimate	the	central
tendency	of	the	data.	In	contrast	to	the	purely	descriptive	mean,	however,	the	quantities	I	and	R
have	 psychological	 meaning	 and	 characterize	 two	 presumed	 cognitive	 processes—namely,
memory	 storage	 (intact	 or	 not)	 and	 redintegration	 (successful	 or	 not).	 The	 more	 involved
answer	concerns	 the	 technical	 issues	surrounding	parameter	estimation,	and	we	will	explore
that	answer	in	several	of	the	following	chapters	in	great	detail.7
This	is	a	good	opportunity	for	recapitulation.	We	have	presented	a	simple	MPT	model	that

characterizes	 the	 presumed	 processes	 operating	 in	 recall	 from	 short-term	memory.	 Like	 the
descriptive	 models	 in	 the	 preceding	 section,	 this	 model	 replaces	 the	 data	 by	 parameters.
Unlike	 descriptive	 models,	 however,	 the	 parameters	 in	 the	 present	 case	 (I	 and	 R)	 have	 a
psychological	interpretation	and	characterize	postulated	cognitive	processes.
To	illustrate	the	way	in	which	these	types	of	models	can	provide	a	peek	inside	our	minds,

consider	an	application	of	Schweickert’s	(1993)	model	to	the	recall	of	lists	containing	words
of	different	natural-language	frequencies	by	Hulme	et	al.	(1997).	Hulme	et	al.	compared	lists
composed	 of	 high-frequency	 words	 (e.g.,	 cat,	 dog)	 and	 low-frequency	 words	 (buttress,
kumquat)	 and	 examined	 performance	 as	 a	 function	 of	 each	 item’s	 serial	 position	 in	 the	 list
(i.e.,	whether	it	was	presented	first,	second,	and	so	on).	What	might	the	MPT	model	shown	in
Figure	1.6	predict	for	this	experiment?
Hulme	 et	 al.	 (1997)	 reasoned	 that	 the	 redintegration	 process	 would	 operate	 more

successfully	 on	 high-frequency	 words	 than	 low-frequency	 words	 because	 the	 former’s
representations	 in	 long-term	memory	 are	more	 easily	 accessed	 by	 partial	 information—and
hence	 are	more	 likely	 to	 contribute	 to	 reconstruction.	 Accordingly,	R	 should	 be	 greater	 for
high-	than	for	low-frequency	items.	Does	it	follow	that	high-frequency	items	should	always	be
recalled	 better	 than	 their	 low-frequency	 counterparts?	 No,	 because	 redintegration	 is	 only
required	if	information	in	memory	is	no	longer	intact.	It	follows	that	early	list	items,	which	are
less	subject	 to	degradation	during	recall,	will	be	 largely	 intact;	because	they	thus	bypass	 the
redintegration	 stage,	 their	 frequency	 should	 matter	 little.	 Later	 list	 items,	 by	 contrast,	 are
degraded	 more	 by	 the	 time	 they	 are	 recalled,	 and	 hence	 red-integration	 becomes	 more
important	for	them—and	with	it,	the	effect	of	word	frequency	should	emerge.	This	is	precisely
what	 Hulme	 et	 al.	 found:	 High-frequency	 words	 were	 recalled	 better	 than	 low-frequency
words,	but	that	effect	was	primarily	confined	to	later	list	positions.	The	data,	when	interpreted
within	the	MPT	model	in	Figure	1.6,	therefore	support	the	notion	that	word	frequency	affects
the	 success	 of	 reconstruction	 of	 partially	 degraded	memory	 traces	 but	 not	 their	 retention	 in
short-term	memory.	Given	the	utmost	simplicity	of	the	MPT	model,	this	is	quite	an	interesting
insight—and	 not	 one	 that	 can	 be	 confidently	 inferred	 from	 inspection	 of	 the	 data.	 Instead,
Hulme	 et	 al.	 buttressed	 their	 conclusions	 by	 quantitatively	 examining	 the	 correspondence
between	the	model’s	predictions	and	the	data.
That	said,	the	limitations	of	the	MPT	model	are	also	noteworthy—and	they	set	the	stage	for
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discussion	of	the	next	class	of	model.	The	MPT	model	may	have	identified	and	characterized	a
cognitive	process	known	as	redintegration,	but	it	neither	described	nor	explained	that	process.
Is	this	even	possible?	Can	we	know	more	about	redintegration?	The	answer	is	a	clear	yes,	and
providing	 that	 additional	 knowledge	 is	 the	 domain	 of	 process	 explanation	 models	 that	 we
consider	 next.	 To	 wrap	 up	 this	 example,	 we	 briefly	 note	 that	 Lewandowsky	 (1999)	 and
Lewandowsky	and	Farrell	(2000)	provided	a	detailed	process	account	of	red-integration	that
explains	exactly	how	partial	traces	can	be	reconstructed.	The	Lewandowsky	and	Farrell	model
consists	of	a	network	of	interconnected	units	that	bounce	information	back	and	forth	between
them,	 adding	 bits	 and	 pieces	 from	 long-term	memory	 to	 the	 degraded	memory	 trace	 at	 each
step,	 until	 the	 original	 item	 is	 perfectly	 reconstructed	 (instantiating	R,	 in	 the	MPT	model’s
terminology)	or	another	 item	is	produced,	 in	which	case	an	error	has	occurred	(1	−	R).8	We
now	consider	this	class	of	models	that	not	only	identify	processes	but	also	explain	them.

1.4.4	Process	Explanation

What	 does	 it	 mean	 to	 explain,	 rather	 than	 merely	 characterize,	 a	 cognitive	 process?	 First,
explanatory	models	 provide	 the	most	 close-up	 view	 inside	 the	 “black	 box”	 that	 is	 possible
with	 current	 psychological	 techniques.	 Like	 characterization	 models,	 their	 power	 rests	 on
hypothetical	cognitive	constructs,	but	by	providing	a	detailed	explanation	of	those	constructs,
they	are	no	longer	neutral.	That	is,	whereas	the	MPT	model	in	the	previous	section	identified
the	 redintegration	 stage	 but	 then	 remained	 neutral	 with	 respect	 to	 how	 exactly	 that
reconstruction	 might	 occur,	 an	 explanatory	 process	 model	 (e.g.,	 Lewandowsky	 &	 Farrell,
2000)	goes	further	and	removes	any	ambiguity	about	how	that	stage	might	operate.
At	first	glance,	one	might	wonder	why	not	every	model	belongs	to	this	class:	After	all,	if	one

can	specify	a	process,	why	not	do	that	rather	than	just	identify	and	characterize	it?	The	answer
is	twofold.	First,	it	is	not	always	possible	to	specify	a	presumed	process	at	the	level	of	detail
required	for	an	explanatory	model,	and	in	 that	case,	a	model	such	as	 the	earlier	MPT	model
might	be	a	valuable	alternative.	Second,	there	are	cases	in	which	a	coarse	characterization	may
be	 preferable	 to	 a	 detailed	 specification.	 For	 example,	 it	 is	 vastly	 more	 important	 for	 a
weatherman	 to	know	whether	 it	 is	 raining	or	 snowing,	 rather	 than	being	confronted	with	 the
exact	details	of	the	water	molecules’	Brownian	motion.	Likewise,	in	psychology,	modeling	at
this	 level	 has	 allowed	 theorists	 to	 identify	 common	 principles	 across	 seemingly	 disparate
areas	(G.	D.	A.	Brown,	Neath,	&	Chater,	2007).
That	said,	we	believe	that	in	most	instances,	cognitive	scientists	would	ultimately	prefer	an

explanatory	process	model	over	mere	characterization,	and	the	remainder	of	this	book	is	thus
largely	(though	not	exclusively)	devoted	to	that	type	of	model.
There	 are	 countless	 explanatory	 models	 of	 cognitive	 phenomena	 ranging	 from	 reasoning

through	short-term	memory	to	categorization,	and	we	will	be	touching	on	many	of	those	during
the	remaining	chapters.
We	begin	our	discussion	by	presenting	a	close-up	of	the	exemplar	model	of	categorization

first	presented	in	Section	1.3.1.	We	choose	this	model,	known	as	the	generalized	context	model
(GCM;	see,	e.g.,	Nosofsky,	1986),	 for	 three	reasons:	First,	 it	 is	undoubtedly	one	of	 the	most
influential	 and	 successful	 existing	models	of	 categorization.	Second,	 its	basic	architecture	 is
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quite	 straightforward	 and	 readily	 implemented	 in	 something	 as	 simple	 as	 Microsoft	 Excel.
Third,	some	of	the	GCM	architecture	also	contributes	to	other	important	models	of	cognition,
which	we	will	consider	in	later	chapters	(e.g.,	SIMPLE	in	Chapter	4).
We	already	know	that	GCM	is	an	exemplar	model.	As	 implied	by	 that	name,	GCM	stores

every	category	exemplar	encountered	during	training	in	memory.	We	mentioned	an	experiment
earlier	 in	which	people	 learned	 to	classify	cartoon	faces;	 in	GCM,	 this	procedure	would	be
implemented	 by	 adding	 each	 stimulus	 to	 the	 pile	 of	 faces	 belonging	 to	 the	 same	 category.
Remember	 that	 each	 response	 during	 training	 is	 followed	 by	 feedback,	 so	 people	 know
whether	 a	 face	 belongs	 to	 a	MacDonald	 or	 a	Campbell	 at	 the	 end	 of	 each	 trial.	 Following
training,	GCM	has	thus	built	two	sets	of	exemplars,	one	for	each	category,	and	all	subsequent
test	stimuli	are	classified	by	referring	to	those	memorized	ensembles.	This	is	where	things	get
really	interesting	(and,	refreshingly,	a	bit	more	complicated,	but	nothing	you	can’t	handle).
First,	we	need	some	terminology.	Let	us	call	a	particular	test	stimulus	i,	and	let	us	refer	to

the	stored	exemplars	as	the	set	J	with	members	j	=	1,	2,	…,	J,	hence	j	 	J.	This	notation	may
seem	like	a	bit	of	an	overkill	at	first	glance,	but	in	fact	it	is	useful	to	clarify	a	few	things	at	the
outset	that	we	will	use	for	the	remainder	of	the	book.	Note	that	we	use	lowercase	letters	(e.g.,
i,	 j,	…	 )	 to	 identify	 specific	 elements	of	 a	 set	 and	 that	 the	number	of	 elements	 in	 that	 set	 is
identified	by	 the	same	uppercase	 letters	 (I,	J,	…),	whereas	 the	 set	 itself	 is	 identified	by	 the
“Fraktur”	version	of	the	letter	(I,	J,	…	).	So,	we	have	a	single	thing	called	i	(or	j	or	whatever),
which	is	one	of	I	elements	of	a	set	I.
We	 are	 now	 ready	 to	 consider	 the	 effects	 of	 presenting	 stimulus	 i.	 In	 a	 nutshell,	 a	 test

stimulus	 “activates”	 all	 stored	 exemplars	 (remember,	 that’s	 j	 	 J)	 to	 an	 extent	 that	 is
determined	by	the	similarity	between	i	and	each	j.	What	exactly	is	similarity?	GCM	assumes
that	 stimuli	 are	 represented	 in	 a	 perceptual	 space	 and	 that	 proximity	 within	 that	 space
translates	into	similarity.	To	illustrate,	consider	the	left	panel	(A)	in	Figure	1.7,	which	shows
the	perceptual	representation	of	three	hypothetical	stimuli	that	differ	along	a	single	dimension
—in	this	case,	line	length.	The	broken	line	labeled	d	 represents	 the	distance	between	two	of
those	stimuli.	It	is	easy	to	see	that	the	greater	this	distance	is,	the	less	similar	the	two	stimuli
are.	Conversely,	the	closer	together	two	stimuli	are,	the	greater	their	similarity.
Now	 consider	 Panel	B.	Here	 again	we	 have	 three	 hypothetical	 stimuli,	 but	 this	 time	 they

differ	along	two	dimensions	simultaneously—namely,	distance	and	angle.	Panel	B	again	shows
the	distance	(d)	between	two	stimuli,	which	is	formally	given	by	the	following	equation:

Figure	 1.7	 The	 representational	 assumptions	 underlying	 the	 generalized	 context	model	 (GCM).	 Panel	 A	 shows	 stimuli	 that
differ	along	one	dimension	only	(line	length),	and	Panel	B	shows	stimuli	that	differ	along	two	dimensions	(line	length	and	angle).
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In	both	panels,	a	representative	distance	(d)	between	two	stimuli	is	shown	by	the	broken	line.

where	xik	 is	 the	value	of	 dimension	k	 for	 test	 item	 i	 (let’s	 say	 that’s	 the	middle	 stimulus	 in
Panel	B	of	Figure	1.7),	and	x	jk	is	the	value	of	dimension	k	for	the	stored	exemplar	j	(say,	the
right-most	stimulus	in	the	panel).	The	number	of	dimensions	that	enter	into	computation	of	the
distance	 is	arbitrary;	 the	cartoon	faces	were	characterized	by	four	dimensions,	but	of	course
we	cannot	easily	show	more	than	two	dimensions	at	a	time.	Those	dimensions	were	eye	height,
eye	separation,	nose	length,	and	mouth	height.	9
An	easy	way	to	understand	Equation	1.3	 is	by	realizing	that	 it	merely	restates	 the	familiar

Pythagorean	theorem	(i.e.,	d2	=	a2	+	b2),	where	a	and	b	are	the	thin	solid	lines	in	Panel	B	of
Figure	 1.7,	 which	 are	 represented	 by	 the	 more	 general	 notation	 of	 dimensional	 differences
(i.e.,	xik	−	xjk)	in	the	equation.
How,	then,	does	distance	relate	to	similarity?	It	is	intuitively	obvious	that	greater	distances

imply	 lesser	 similarity,	 but	 GCM	 explicitly	 postulates	 an	 exponential	 relationship	 of	 the
following	form:

sij	=	exp(−c	·	dij),															(1.4)

where	c	is	a	parameter	and	dij	the	distance	as	just	defined.	Figure	1.8	(see	page	22)	visualizes
this	function	and	shows	how	the	activation	of	an	exemplar	(i.e.,	sij	)	declines	as	a	function	of
the	 distance	 (dij)	 between	 that	 exemplar	 and	 the	 test	 stimulus.	 You	 may	 recognize	 that	 this
function	looks	much	like	the	famous	generalization	gradient	that	is	observed	in	most	situations
involving	 discrimination	 (in	 species	 ranging	 from	 pigeons	 to	 humans;	 Shepard,	 1987):	 This
similarity	is	no	coincidence;	rather,	it	motivates	the	functional	form	of	the	similarity	function	in
Equation	 1.4.	 This	 similarity	 function	 is	 central	 to	 GCM’s	 ability	 to	 generalize	 learned
responses	 (i.e.,	 cartoon	 faces	 seen	during	study)	 to	novel	 stimuli	 (never-before-seen	cartoon
faces	presented	at	test	only).
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Figure	1.8	The	effects	of	distance	on	activation	in	the	GCM.	Activation	(i.e.,	sij)	is	shown	as	a	function	of	distance	(dij).	The
parameter	c	(see	Equation	1.4)	is	set	to	.5.

It	 turns	 out	 that	 there	 is	 little	 left	 to	 do:	 Having	 presented	 a	mechanism	 by	which	 a	 test
stimulus	 activates	 an	 exemplar	 according	 to	 its	 proximity	 in	 psychological	 space,	 we	 now
compute	those	activations	for	all	memorized	exemplars.	That	 is,	we	compute	the	distance	dij
between	 i	and	each	 j	 	 J	as	given	by	Equation	1.3	and	derive	from	that	 the	activation	sij	as
given	by	Equation	1.4.	The	next	step	is	to	convert	the	entire	set	of	resulting	activations	into	an
explicit	 decision:	 Which	 category	 does	 the	 stimulus	 belong	 to?	 To	 accomplish	 this,	 the
activations	 are	 summed	 separately	 across	 exemplars	within	 each	 of	 the	 two	 categories.	The
relative	magnitude	of	those	two	sums	directly	translates	into	response	probabilities	as	follows:

where	A	and	B	refer	to	the	two	possible	categories,	and	P(Ri	=	A|i)	means	“the	probability	of
classifying	stimulus	i	into	category	A.”	It	follows	that	application	of	Equations	1.3	through	1.5
permits	us	to	derive	classification	predictions	from	the	GCM.	It	is	those	predictions	that	were
plotted	 on	 the	 abscissa	 (x-axis)	 in	 the	 left	 panel	 of	 the	 earlier	 Figure	 1.4,	 and	 it	 is	 those
predictions	that	were	found	to	be	in	such	close	accord	with	the	data.
If	 this	 is	 your	 first	 exposure	 to	 quantitative	 explanatory	 models,	 the	 GCM	 may	 appear

daunting	at	first	glance.	We	therefore	wrap	up	this	section	by	taking	a	second	tour	through	the
Lewandowsky, Stephan, and Simon Farrell. Computational Modeling in Cognition : Principles and Practice, SAGE Publications, 2012. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/jhu/detail.action?docID=1598333.
Created from jhu on 2018-10-07 17:23:10.

C
op

yr
ig

ht
 ©

 2
01

2.
 S

A
G

E
 P

ub
lic

at
io

ns
. A

ll 
rig

ht
s 

re
se

rv
ed

.



GCM	that	connects	the	model	more	directly	to	the	cartoon	face	experiment.
Figure	 1.9	 shows	 the	 stimuli	 used	 during	 training.	 Each	 of	 those	 faces	 corresponds	 to	 a

memorized	exemplar	j	that	is	represented	by	a	set	of	dimensional	values	{xj1,	xj2,…	},	where
each	 x	 jk	 is	 the	 numeric	 value	 associated	 with	 dimension	 k.	 For	 example,	 if	 the	 nose	 of
exemplar	 j	 has	 length	 5,	 then	 xj1	 =5	 on	 the	 assumption	 that	 the	 first	 dimension	 (arbitrarily)
represents	the	length	of	the	nose.

Figure	1.9	Stimuli	used	in	a	classification	experiment	by	Nosofsky	(1991).	Each	row	shows	training	faces	from	one	of	the	two
categories.	Figure	reprinted	from	Nosofsky,	R.	M.	(1991).	Tests	of	an	exemplar	mode	for	relating	perceptual	classification	and
recognition	memory.	Journal	of	Experimental	Psychology:	Human	Perception	and	Performance,	17,	 3–27.	 Published	 by
the	American	Psychological	Association;	reprinted	with	permission.

To	obtain	predictions	from	the	model,	we	 then	present	 test	stimuli	 (those	shown	in	Figure
1.9	but	also	new	ones	to	test	the	model’s	ability	to	generalize).	Those	test	stimuli	are	coded	in
the	 same	 way	 as	 training	 stimuli—namely,	 by	 a	 set	 of	 dimensional	 values.	 For	 each	 test
stimulus	 i,	we	 first	 compute	 the	distance	between	 it	 and	exemplar	 j	 (Equation	1.3).	We	next
convert	 that	 distance	 to	 an	 activation	 of	 the	 memorized	 exemplar	 j	 (Equation	 1.4)	 before
summing	across	exemplars	within	each	category	(Equation	1.5)	to	obtain	a	predicted	response
probability.	Do	this	for	each	stimulus	in	turn,	and	bingo,	you	have	the	model’s	complete	set	of
predictions	 shown	 in	 Figure	 1.4.	 How	 exactly	 are	 these	 computations	 performed?	A	whole
range	 of	 options	 exists:	 If	 the	 number	 of	 exemplars	 and	 dimensions	 is	 small,	 a	 simple
calculator,	paper,	and	a	pencil	will	do.	More	than	likely,	though,	you	will	be	using	a	computer
package	 (such	 as	 a	 suitable	 worksheet	 in	 Excel)	 or	 a	 computer	 program	 (e.g.,	 written	 in	 a
language	such	as	MATLAB	or	R).	Regardless	of	how	we	perform	these	computations,	we	are
assuming	that	they	represent	an	analog	of	the	processes	used	by	people.	That	is,	we	presume
that	people	 remember	exemplars	and	base	 their	 judgments	on	 those	memories	alone,	without
access	to	rules	or	other	abstractions.
At	 this	 point,	 one	 can	 usefully	 ponder	 two	 questions.	 First,	 why	 would	 we	 focus	 on	 an

experiment	 that	 involves	 rather	 artificial	 cartoon	 faces?	Do	 these	 stimuli	 and	 the	 associated
data	 and	modeling	 have	 any	 bearing	 on	 classification	 of	 “real-life”	 stimuli?	Yes,	 in	 several
ways.	 Not	 only	 can	 the	 GCM	 handle	 performance	 with	 large	 and	 ill-defined	 perceptual
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categories	 (McKinley	 &	 Nosofsky,	 1995),	 but	 recent	 extensions	 of	 the	 model	 have	 been
successfully	applied	to	the	study	of	natural	concepts,	such	as	fruits	and	vegetables	(Verbeemen,
Vanpaemel,	Pattyn,	Storms,	&	Verguts,	2007).	The	GCM	thus	handles	a	wide	variety	of	both
artificial	 and	 naturalistic	 categorizations.	 Second,	 one	 might	 wonder	 about	 the	 motivation
underlying	 the	 equations	 that	 define	 the	 GCM.	Why	 is	 distance	 related	 to	 similarity	 via	 an
exponential	 function	 (Equation	1.4)?	Why	are	 responses	 determined	 in	 the	manner	 shown	 in
Equation	1.5?	It	turns	out	that	for	any	good	model—and	the	GCM	is	a	good	model—the	choice
of	mathematics	is	not	at	all	arbitrary	but	derived	from	some	deeper	theoretical	principle.	For
example,	the	distance-similarity	relationship	in	the	GCM	incorporates	our	knowledge	about	the
“universal	 law	of	generalization”	 (Shepard,	1987),	and	 the	choice	of	 response	 implements	a
theoretical	approach	first	developed	by	Luce	(1963).
What	do	you	now	know	and	what	is	left	to	do?	You	have	managed	to	study	your	(possibly)

first	explanatory	process	model,	and	you	should	understand	how	the	model	can	predict	results
for	 specific	 stimuli	 in	 a	 very	 specific	 experiment.	 However,	 a	 few	 obstacles	 remain	 to	 be
overcome,	most	of	which	relate	to	the	“how”	of	applying	the	model	to	data.	Needless	to	say,
those	topics	will	be	covered	in	subsequent	chapters.

1.4.5	Classes	of	Models

We	sketched	out	three	broad	classes	of	models.	We	considered	descriptive	models	whose	sole
purpose	it	is	to	replace	the	intricacies	of	a	full	data	set	with	a	simpler	representation	in	terms
of	the	model’s	parameters.	Although	those	models	themselves	have	no	psychological	content,
they	may	well	have	compelling	psychological	implications.
We	then	considered	two	classes	of	models	that	both	seek	to	illuminate	the	workings	of	the

mind,	rather	than	data,	but	do	so	to	a	greatly	varying	extent.	Models	that	characterize	processes
identify	and	measure	cognitive	stages,	but	they	are	neutral	with	respect	to	the	exact	mechanics
of	 those	 stages.	 Explanatory	 models,	 by	 contrast,	 describe	 all	 cognitive	 processes	 in	 great
detail	and	leave	nothing	within	their	scope	unspecified.10
Other	distinctions	between	models	are	possible	and	have	been	proposed	(e.g.,	Luce,	1995;

Marr,	1982;	Sun,	Coward,	&	Zenzen,	2005),	and	we	make	no	claim	that	our	classification	is
better	 than	other	accounts.	Unlike	other	accounts,	however,	our	 three	classes	of	models	map
into	three	distinct	tasks	that	confront	cognitive	scientists:	Do	we	want	to	describe	data?	Do	we
want	 to	 identify	 and	 characterize	 broad	 stages	 of	 processing?	 Do	we	 want	 to	 explain	 how
exactly	a	set	of	postulated	cognitive	processes	interact	to	produce	the	behavior	of	interest?

1.5	What	Can	We	Expect	From	Models?

We	have	 explored	 some	of	 the	powerful	 insights	 that	 are	 afforded	by	quantitative	modeling.
However,	all	examples	so	far	were	demonstrations	that	one	model	or	another	could	provide	a
good	quantitative	account	of	otherwise	inexplicable	data—impressive,	perhaps,	but	is	that	all
we	can	expect	from	models?	Is	a	“good	fit”	between	a	model’s	predictions	and	the	data	the	one
and	only	goal	of	modeling?	The	answer	is	no;	there	are	several	other	ways	in	which	models
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can	inform	scientific	progress.

1.5.1	Classification	of	Phenomena

It	 is	 intuitively	obvious	 that,	 at	 least	at	 the	current	 level	of	understanding	 in	our	 science,	all
models	will	necessarily	be	limited	in	their	explanatory	power.	Every	model	will	be	confronted
sooner	or	later	with	data	that	it	cannot	accommodate.	So,	if	every	model	is	doomed	to	fail,	why
spend	considerable	 time	and	effort	on	 its	development	 in	 the	first	place?	One	answer	 to	 this
conundrum	was	provided	by	Estes	(1975),	who	suggested	that	even	the	mere	classification	of
phenomena	into	those	that	fall	within	and	those	that	fall	outside	a	model’s	scope	can	be	very
informative:	“What	we	hope	for	primarily	from	models	is	that	they	will	bring	out	relationships
between	experiments	or	sets	of	data	that	we	would	not	otherwise	have	perceived.	The	fruit	of
an	interaction	between	model	and	data	should	be	a	new	categorization	of	phenomena	in	which
observations	 are	 organized	 in	 terms	 of	 a	 rational	 scheme	 in	 contrast	 to	 the	 surface
demarcations	manifest	in	data”	(p.	271).
Even	 if	 we	 find	 that	 it	 takes	 two	 different	 models	 to	 handle	 two	 distinct	 subclasses	 of

phenomena,	 this	need	not	be	at	 all	bad	but	may	 in	 fact	 crystallize	an	 interesting	question.	 In
physics,	 for	 example,	 for	 a	 very	 long	 time,	 light	was	 alternately	 considered	 as	 a	wave	or	 a
stream	of	particles.	The	two	models	were	able	to	capture	a	different	subset	of	phenomena,	with
no	 cross-linkage	 between	 those	 sets	 of	 phenomena	 and	 the	 two	 theories.	Although	 this	 state
was	perhaps	not	entirely	satisfactory,	it	clearly	did	not	retard	progress	in	physics.
In	 psychology,	 we	 suggest	 that	 models	 have	 similarly	 permitted	 a	 classification	 of

phenomena	in	categorization.	We	noted	earlier	that	the	GCM	is	a	powerful	model	that	has	had	a
profound	impact	on	our	understanding	of	how	people	classify	stimuli.	However,	there	are	also
clear	limits	on	the	applicability	of	the	GCM.	For	example,	Rouder	and	Ratcliff	(2004)	showed
that	 the	 GCM	 captures	 people’s	 behavior	 only	 when	 the	 stimuli	 are	 few	 and	 highly
discriminable.	When	 there	 is	 a	 large	 ensemble	 of	 confusable	 stimuli,	 by	 contrast,	 people’s
behavior	 is	 better	 captured	 by	 a	 rule	model	 rather	 than	 the	GCM’s	 exemplar	 representation
(more	 on	 this	 in	 Chapter	 7).	 Likewise,	 Little	 and	 Lewandowsky	 (2009)	 showed	 that	 in	 a
complex	probabilistic	categorization	task,	some	people	will	build	an	exemplar	representation,
whereas	others	will	create	an	ensemble	of	partial	rules;	the	former	were	described	well	by	the
GCM,	but	the	latter	were	best	described	by	a	rule	model.	Taken	together,	those	studies	serve	to
delineate	 the	 applicability	 of	 two	 competing	 theoretical	 approaches—namely,	 rules	 versus
exemplars—somewhat	akin	to	the	differentiation	between	wave	and	particle	theories	of	light.

1.5.2	Emergence	of	Understanding

The	 models	 we	 consider	 in	 this	 book	 are,	 almost	 by	 definition,	 always	 implemented	 as	 a
computer	program.	Computers,	however,	only	do	as	 they	are	programmed	to	do—does	it	not
follow	that	our	models,	unlike	behavioral	experiments,	will	never	generate	anything	truly	novel
or	unexpected?	Indeed,	some	time	ago,	this	opinion	appeared	to	reflect	accepted	practice	(e.g.,
Reitman,	 1965).	 Since	 then,	 it	 has	 become	 apparent	 that	 this	 opinion	 is	 flawed.	There	 have
been	innumerable	instances	in	which	models	have	generated	novel	insights	in	nontrivial	ways,
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many	 of	 which	 involved	 artificial	 neural	 networks.	 (Networks	 contain	many	 interconnected
units	that	process	and	transmit	information.)	For	example,	Seidenberg	and	McClelland	(1989)
presented	 a	 network	 that	 could	 learn	 to	 pronounce	 both	 regular	 (lint)	 and	 irregular	 (pint)
words	from	printed	input:	It	was	not	at	all	clear	prior	to	the	modeling	being	conducted	that	a
uniform	architecture	could	handle	both	types	of	words.	Indeed,	a	“central	dogma”	(Seidenberg
&	McClelland,	1989,	p.	525)	of	earlier	models	had	been	that	two	processes	were	required	to
accommodate	irregular	words	(via	lexical	lookup)	and	regular	(non)words	(via	pronunciation
rules).
As	 another	 example,	 Botvinick	 and	 Plaut	 (2006)	 recently	 presented	 a	 network	 model	 of

short-term	memory	that	was	able	to	learn	the	highly	abstract	ability	of	“seriation”—namely,	the
ability	 to	 reproduce	 novel	 random	 sequences	 of	 stimuli.	 Thus,	 after	 learning	 the	 skill,	 the
model	was	capable	of	reproducing	short	serial	lists.	Thus,	when	presented	with	“A	K	P	Q	B,”
the	model	would	 reproduce	 that	 sequence	 after	 a	 single	 presentation	with	 roughly	 the	 same
accuracy	and	subject	to	the	same	performance	constraints	as	humans.	This	might	appear	like	a
trivial	feat	at	first	glance,	but	it	is	not:	It	is	insufficient	to	learn	pairwise	contingencies	such	as
“A	precedes	B”	because	in	a	random	list,	A	might	precede	B	as	frequently	as	B	precedes	A.
Likewise,	it	is	insufficient	to	learn	that	“A	occurs	in	position	1”	because	in	fact	A	could	occur
in	any	position,	and	so	on	for	any	other	specific	arrangements	of	letters	(triplets,	quadruplets,
etc.).	 Instead,	 the	model	had	 to	 learn	 the	highly	abstract	ability	“whatever	 I	 see	 I	will	 try	 to
reproduce	 in	 the	 same	 order”	 from	 a	 small	 subset	 of	 all	 possible	 sequences.	 This	 abstract
ability,	once	learned,	could	then	be	transferred	to	novel	sequences.
In	summary,	the	point	that	models	can	yield	unexpected	and	novel	insights	was	perhaps	best

summed	 up	 by	 Fum	 et	 al.	 (2007):	 “New	ways	 of	 understanding	may	 assume	 several	 forms.
They	 can	 derive,	 for	 instance,	 from	 the	 discovery	 of	 a	 single	 unifying	 principle	 that	 will
explain	a	set	of	hitherto	seemingly	unrelated	facts.	They	can	lead	to	the	emergence	of	complex,
holistic	 forms	 of	 behavior	 from	 the	 specification	 of	 simple	 local	 rules	 of	 interaction.	 New
ways	of	understanding	can	arise	from	unexpected	results	that	defy	the	modelers	intuition”	(p.
136).

1.5.3	Exploration	of	Implications

Unlike	people,	models	can	quite	literally	be	taken	apart.	For	example,	we	can	“lesion”	models
to	 observe	 the	 outcome	 on	 behavior	 of	 certain	 localized	 dys-functions.	 As	 a	 case	 in	 point,
consider	 the	 model	 by	 Hinton	 and	 Shallice	 (1991),	 which	 was	 trained	 to	 map	 a	 set	 of
orthographic	 representations	 into	 semantic	 features,	 so	 that	presentation	of	 a	 spelling	pattern
would	activate	the	correct	“word”	at	the	semantic	output	level	of	their	network.	After	training,
Hinton	and	Shallice	lesioned	their	model	in	various	ways—for	example,	by	removing	units,	by
contaminating	 the	 connections	 between	 units	 with	 random	 noise,	 or	 by	 eliminating	 some
connections	altogether.
Hinton	and	Shallice	found	that	virtually	any	such	lesioning	of	their	network,	irrespective	of

location,	 led	 to	 a	 persistent	 co-occurrence	of	 visual	 (cat	 read	 as	mat)	 and	 semantic	 (peach
read	 as	 apricot)	 errors.	 This	 generality	 elegantly	 explained	 why	 this	 mix	 of	 visual	 and
semantic	errors	is	common	across	a	wide	range	of	patients	whose	performance	deficits	differ
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considerably	in	other	respects.
We	can	draw	two	conclusions	from	this	example:	First,	it	clarifies	the	in-principle	point	that

one	can	do	things	to	models	that	one	cannot	do	to	people,	and	that	those	lesioning	experiments
can	yield	valuable	knowledge.	Second,	the	fact	that	the	results	in	this	instance	were	surprising
lends	further	support	to	the	point	made	in	the	previous	section—namely,	that	models	can	show
emergent	properties	that	are	not	at	all	apparent	by	verbal	analysis	alone.

1.6	Potential	Problems

We	 conclude	 by	 discussing	 two	 issues	 that	 must	 be	 considered	 to	 ensure	 a	 complete
understanding	of	the	basic	principles	of	modeling.

1.6.1	Scope	and	Testability

Suppose	you	are	a	venture	capitalist	and	a	scientist	approaches	you	for	funding	to	develop	a
new	theory	that	will	revolutionize	gambling.	A	first	version	of	the	theory	exists,	and	it	has	been
extremely	successful	because	it	probabilistically	characterized	the	outcomes	of	20	successive
rolls	of	a	die.	 In	quantitative	 terms,	 the	 theory	anticipated	each	individual	outcome	with	P	=
1/6.	Would	you	be	impressed?	We	trust	that	you	are	not,	because	any	theory	that	predicts	any
possible	outcome	with	equal	facility	is	of	little	scientific	interest,	even	if	it	happens	to	be	in
complete	accord	with	the	data	(e.g.,	Roberts	&	Pashler,	2000).	This	is	quite	obvious	with	our
fictitious	“theory”	of	gambling,	but	it	 is	less	obvious—though	nonetheless	equally	applicable
—with	psychological	theories.
Let	us	 reconsider	one	of	 the	 earlier	 examples:	Nosofsky	 (1991)	 showed	 that	 an	 exemplar

model	 (the	 GCM)	 can	 integrate	 people’s	 recognition	 and	 classification	 responses	 under	 a
common	theoretical	umbrella	(see	Figure	1.4).	We	considered	this	to	be	impressive,	especially
because	the	GCM	performed	better	than	a	competing	prototype	theory,	but	was	our	satisfaction
justified?	 What	 if	 the	 exemplar	 model	 could	 have	 equally	 explained	 any	 other	 possible
relationship	between	recognition	and	classification	and	not	just	the	one	shown	in	Figure	1.3?
Indeed,	 in	 that	 case,	 one	 would	 need	 to	 be	 quite	 concerned	 about	 the	 exemplar	 model’s
viability	 as	 a	 testable	 and	 falsifiable	 psychological	 theory.11	 Fortunately,	 however,	 these
concerns	can	be	allayed	by	the	fact	that	the	exemplar	model	is	at	least	in	principle	subject	to
falsification,	 as	 revealed	 by	 some	 of	 the	 results	 mentioned	 earlier	 that	 place	 limits	 on	 the
GCM’s	 applicability	 (e.g.,	 Little	&	Lewandowsky,	 2009;	Rouder	&	Ratcliff,	 2004;	Yang	&
Lewandowsky,	2004).
We	are	now	faced	with	a	conundrum:	On	the	one	hand,	we	want	our	theories	to	explain	data.

We	want	powerful	theories,	such	as	Kepler’s,	that	explain	fundamental	aspects	of	our	universe.
We	want	 powerful	 theories,	 such	 as	Darwin’s,	 to	 explain	 the	 diversity	 of	 life.	On	 the	 other
hand,	we	want	 the	theories	 to	be	falsifiable—that	 is,	we	want	 to	be	assured	that	 there	are	at
least	 hypothetical	 outcomes	 that,	 if	 they	 are	 ever	 observed,	 would	 falsify	 a	 theory.	 For
example,	Darwin’s	 theory	of	 evolution	predicts	 a	 strict	 sequence	 in	which	 species	 evolved;
hence,	 any	 observation	 to	 the	 contrary	 in	 the	 fossil	 record—for	 example,	 human	 bones	 co-
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occurring	with	dinosaur	remains	in	the	same	geological	strata	(e.g.,	Root-Bernstein,	1981)—
would	 seriously	 challenge	 the	 theory.	 This	 point	 is	 sufficiently	 important	 to	 bear	 repetition:
Even	though	we	are	convinced	that	Darwin’s	theory	of	evolution,	one	of	the	most	elegant	and
powerful	 achievements	 of	 human	 thought,	 is	 true,	 we	 simultaneously	 also	 want	 it	 to	 be
falsifiable—falsifiable,	 not	 false.12	 Likewise,	 we	 are	 committed	 to	 the	 idea	 that	 the	 earth
orbits	around	the	sun,	rather	than	the	other	way	round,	but	as	scientists,	we	accept	that	fact	only
because	it	is	based	on	a	theory	that	is	falsifiable—again,	falsifiable,	not	false.
Roberts	and	Pashler	(2000)	considered	the	issue	of	falsifiability	and	scope	with	reference	to

psychological	models	and	provided	an	elegant	graphical	summary	that	is	reproduced	in	Figure
1.10.	The	 figure	 shows	 four	hypothetical	outcome	spaces	 that	are	 formed	by	 two	behavioral
measures.	What	those	measures	represent	is	totally	arbitrary;	they	could	be	trials	to	a	criterion
in	a	memory	experiment	and	a	final	recognition	score	or	any	other	pair	of	measures	of	interest.
Within	 each	 panel,	 the	 dotted	 area	 represents	 all	 possible	 predictions	 that	 are	within	 the

scope	of	 a	psychological	 theory.	The	 top	 row	of	panels	 represents	 some	hypothetical	 theory
whose	 predictions	 are	 constrained	 to	 a	 narrow	 range	 of	 outcomes;	 any	 outcome	 outside	 the
dotted	sliver	would	constitute	contrary	evidence,	and	only	the	narrow	range	of	values	within
the	sliver	would	constitute	supporting	evidence.	Now	compare	that	sliver	to	the	bottom	row	of
panels	with	its	very	generous	dotted	areas;	the	theory	shown	here	is	compatible	with	nearly	all
possible	outcomes.	It	follows	that	any	observed	outcome	that	falls	within	a	dotted	area	would
offer	 greater	 support	 for	 the	 theory	 in	 the	 top	 row	 than	 the	 bottom	 row,	 simply	 because	 the
likelihood	 of	 falsification	 is	 greater	 for	 the	 former	 than	 the	 latter,	 thus	 rendering	 the	match
between	data	and	predictions	far	less	likely—and	hence	more	informative	when	it	occurs	(see
Dunn,	2000,	for	a	similar	but	more	formalized	view).	Ideally,	we	would	want	our	theories	to
occupy	only	a	small	region	of	the	outcome	space	but	for	all	observed	outcomes	to	fall	within
that	region—as	they	do	for	Kepler’s	and	Darwin’s	theories.13
Another	 important	 aspect	 of	 Figure	 1.10	 concerns	 the	 quality	 of	 the	 data,	 which	 is

represented	by	the	columns	of	panels.	The	data	(shown	by	the	single	black	point	bracketed	by
error	bars)	exhibit	less	variability	in	the	left	column	of	panels	than	in	the	right.	For	now,	we
note	briefly	 that	support	for	 the	theory	is	 thus	strongest	 in	 the	top	left	panel;	beyond	that,	we
defer	 discussion	 of	 the	 important	 role	 of	 data	 to	Chapter	 6.	 That	 chapter	will	 also	 provide
another	in-depth	and	more	formal	look	at	the	issue	of	testability	and	falsifiability.
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Figure	1.10	Four	possible	hypothetical	relationships	between	theory	and	data	involving	two	measures	of	behavior	(A	and	B).
Each	panel	describes	a	hypothetical	outcome	space	permitted	by	the	two	measures.	The	shaded	areas	represent	the	predictions
of	 a	 theory	 that	 differs	 in	 predictive	 scope	 (narrow	 and	 broad	 in	 the	 top	 and	 bottom	 panels,	 respectively).	 The	 error	 bars
represent	the	precision	of	the	observed	data	(represented	by	the	black	dot).	See	text	for	details.	Figure	reprinted	from	Roberts,
S.,	&	Pashler,	H.	(2000).	How	persuasive	is	a	good	fit?	A	comment	on	theory	testing.	Psychological	Review,	107,	358–367.
Published	by	the	American	Psychological	Association;	reprinted	with	permission.

Let	us	now	turn	from	the	abstract	representation	in	Figure	1.10	to	a	specific	recent	instance
in	which	two	theories	were	compared	by	exploration	of	an	outcome	space.	Howard,	Jing,	Rao,
Provyn,	 and	Datey	 (2009)	examined	 the	nature	of	 associations	among	 list	 items.	Their	 study
was	 quite	 complex,	 but	 their	 central	 question	 of	 interest	 can	 be	 stated	 quite	 simply:	 Are
associations	 between	 list	 items	 symmetrical	 or	 asymmetrical?	 That	 is,	 given	 a	 to-be-
memorized	list	such	as	“A	B	C	D,”	is	the	association	from	A	to	B	as	strong	as	the	association
from	B	to	A?	Can	you	recall	B	when	given	A	as	a	cue	with	equal	facility	as	recalling	A	when
given	B?	And	how	does	the	extent	of	symmetry	vary	with	list	position?	Empirically,	it	turns	out
that	adjacent	associations	(such	as	between	A	and	B)	are	asymmetric	and	stronger	in	a	forward
direction,	whereas	remote	associations	(such	as	between	A	and	D)	are	symmetrical.	Howard	et
al.	(2009)	compared	the	abilities	of	two	theories	(whose	identity	is	irrelevant	in	this	context)
to	 capture	 this	 pattern	of	 symmetries;	 the	pattern	of	 predictions	 for	 the	 two	 rival	 theories	 is
shown	in	Figure	1.11.
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Figure	1.11	Outcome	space	covered	by	two	models	examined	by	Howard,	Jing,	Rao,	Provyn,	and	Datey	(2009).	An	index	of
remote	asymmetry	is	shown	as	a	function	of	an	index	of	adjacent	asymmetry	for	a	variety	of	parameter	values	for	two	models
(referred	 to	 here	 as	 “black”	 and	 “gray,”	 corresponding	 to	 the	 color	 of	 their	 plotting	 symbols).	 See	 text	 for	 details.	 Figure
reprinted	 from	 Howard,	 M.	 W.,	 Jing,	 B.,	 Rao,	 V.	 A.,	 Provyn,	 J.	 P.,	 &	 Datey,	 A.	 V.	 (2009).	 Bridging	 the	 gap:	 Transitive
associations	between	items	presented	in	similar	temporal	contexts.	Journal	of	Experimental	Psychology:	Learning,	Memory
&	Cognition,	35,	391–407.	Published	by	the	American	Psychological	Association;	reprinted	with	permission.

The	figure	shows	an	outcome	space	involving	two	measures—namely,	indices	of	symmetry
for	 adjacent	 and	 remote	 associations.	 In	 Howard	 et	 al.’s	 (2009)	 experiment,	 the	 observed
values	 were	 .25	 and	 .03,	 respectively.	 The	 dark	 and	 gray	 point	 clouds	 in	 the	 figure,
respectively,	 represent	 the	 possible	 predictions	 of	 the	 two	models	 under	 consideration.	The
figure	 suggests	 the	 following	 conclusions:	 First,	 both	models	 can	 handle	 the	 data	 (i.e.,	 their
prediction	regions	contain	the	point	.25,	.03).	Second,	the	“gray”	model	covers	a	much	larger
region	 of	 the	 outcome	 space	 than	 the	 “black”	 model,	 including	 regions	 in	 which	 remote
asymmetry	 is	greater	 than	adjacent	 symmetry,	 something	 that	has	never	been	observed	 in	 the
data.	Third,	it	follows	that	the	“black”	model	is	supported	more	by	these	data	than	the	“gray”
model.	 (This	 conclusion	 is	 also	 supported	 by	 other	 results	 not	 shown	 in	 the	 figure,	 but	 for
present	purposes,	we	focus	only	on	the	trade-off	between	scope	and	falsifiability.)	Note	how
the	 large	 area	 covered	 by	 the	 “gray”	model	 corresponds	 to	 the	 hypothetical	 situation	 in	 the
bottom	 panels	 of	 Figure	 1.10,	 whereas	 the	 small	 area	 covered	 by	 the	 “black”	 model
corresponds	to	the	situation	in	the	top	panels.

1.6.2	Identification	and	Truth

Lewandowsky, Stephan, and Simon Farrell. Computational Modeling in Cognition : Principles and Practice, SAGE Publications, 2012. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/jhu/detail.action?docID=1598333.
Created from jhu on 2018-10-07 17:23:10.

C
op

yr
ig

ht
 ©

 2
01

2.
 S

A
G

E
 P

ub
lic

at
io

ns
. A

ll 
rig

ht
s 

re
se

rv
ed

.



Throughout	our	discussion,	we	have	emphasized	the	existence	of	multiple	alternative	models	to
explain	the	same	data.	We	considered	the	Ptolemaic	and	the	Copernican	system,	we	contrasted
Nosofsky’s	 (1986)	 GCM	 exemplar	 theory	 with	 a	 prototype	 model,	 and	 we	 repeatedly
underscored	the	need	for	model	selection.	Our	discussion	entailed	two	tacit	assumptions:	first,
that	we	 can	 identify	 the	 “correct”	model	 and,	 second,	 that	 there	 is	 such	 a	 thing	 as	 a	 “true”
model.	 It	 turns	 out	 that	 both	 of	 those	 assumptions	 are	 most	 likely	 wrong.	 So	 why	 do	 we
nonetheless	 advocate	 modeling?	What	 are	 the	 implications	 of	 the	 fact	 that	 models	 may	 be
neither	identifiable	nor	true?
Let	us	first	clarify	what	exactly	the	problem	concerning	model	identification	does	and	does

not	 imply.	 First,	 it	 is	 important	 to	 realize	 that	 this	 problem	 is	 not	 unique	 to	 psychology	 but
applies	to	all	sciences;	we	noted	earlier	that	in	addition	to	Kepler’s	model,	an	infinite	number
of	equivalent	models	can	adequately	capture	planetary	motion.	Does	this	invalidate	our	view
of	 the	 solar	 system?	 No,	 it	 does	 not,	 because	 as	 we	 also	 noted	 earlier,	 criteria	 other	 than
goodness	of	 fit	help	differentiate	between	models.	So,	 the	 fact	 that	 in	cognitive	science,	 just
like	in	astronomy,	“there	undoubtedly	exists	a	very	diverse	set	of	models,	but	all	equivalent	in
that	they	predict	the	behavior	of	humans	at	cognitive	tasks”	(J.	R.	Anderson,	1976,	p.	4)	is	true
in	principle	but	not	particularly	troubling.
Second,	the	fact	that	there	exist,	in	principle,	many	equivalent	models	does	not	imply	that	all

models	are	equally	capable.	Indeed,	we	have	shown	throughout	this	chapter	that	some	models
handle	 the	data	better	 than	others.	 It	 is	 therefore	 clearly	possible	 to	 choose	one	model	over
another,	even	if	(in	principle)	the	chosen	model	is	equivalent	to	many	unknown	others.	Simply
put,	the	fact	that	there	are	many	good	models	out	there	does	not	prevent	us	from	rejecting	the
bad	ones.
Third,	 the	 mere	 existence	 of	 equivalent	 models	 does	 not	 imply	 that	 they	 have	 been—or

indeed	will	be—discovered.	In	our	experience,	it	is	difficult	enough	to	select	a	single	suitable
model,	let	alone	worry	about	the	existence	of	an	infinite	number	of	equivalent	competitors.
Finally,	even	supposing	that	we	must	select	from	among	a	number	of	competing	models	of

equivalent	capability	 (i.e.,	equal	goodness	of	 fit),	 some	fairly	straightforward	considerations
have	 been	 put	 forward	 to	 achieve	 this	 (see,	 e.g.,	 Fum	et	 al.,	 2007).	We	 revisit	 this	 issue	 in
detail	in	Chapter	5.
Now	let	us	turn	to	the	issue	concerning	the	“truth”	of	a	model.	Is	there	such	a	thing	as	one

true	model?	And	if	not,	what	are	the	implications	of	that?	The	answer	to	the	first	question	is
strongly	 implied	by	 the	 preceding	discussion,	 and	 it	was	most	 clearly	 stated	by	MacCallum
(2003):	“Regardless	of	their	form	or	function,	or	the	area	in	which	they	are	used,	it	is	safe	to
say	that	these	models	all	have	one	thing	in	common:	They	are	all	wrong”	(p.	114).	Now	what?
To	 answer	 this	 question,	we	 again	 briefly	 digress	 into	 astronomy	 by	 noting	 that	Kepler’s

model,	 being	 based	 on	Newtonian	 physics,	 is—you	 guessed	 it—wrong.	We	 now	 know	 that
Newtonian	 physics	 is	 “wrong”	 because	 it	 does	 not	 capture	 the	 phenomena	 associated	 with
relativity.	Does	this	mean	that	the	earth	is	in	fact	not	orbiting	around	the	sun?	No,	it	does	not,
because	 Kepler’s	 model	 is	 nonetheless	 useful	 because	 within	 the	 realm	 for	 which	 it	 was
designed—planetary	motion—Newtonian	physics	holds	to	an	acceptable	degree.	Likewise,	in
psychology,	our	wrong	models	can	nonetheless	be	useful	(MacCallum,	2003).	We	show	exactly
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how	wrong	models	can	still	be	useful	at	the	end	of	the	next	chapter,	after	we	introduce	a	few
more	essential	tools	and	concepts.

Notes

1.		Lest	one	think	that	the	heliocentric	and	geocentric	models	exhaust	all	possible	views	of
the	solar	system,	it	is	worth	clarifying	that	there	is	an	infinite	number	of	equivalent	models	that
can	 adequately	 capture	 planetary	 motion	 because	 relative	 motion	 can	 be	 described	 with
respect	to	any	possible	vantage	point.
2.	 	 Goodness	 of	 fit	 is	 a	 term	 for	 the	 degree	 of	 quantitative	 error	 between	 a	 model’s

predictions	and	the	data;	this	important	term	and	many	others	are	discussed	in	detail	in	Chapter
2.
3.		Astute	readers	may	wonder	how	the	two	could	possibly	differ.	The	answer	lies	in	the	fact

that	the	similarity	rule	involved	in	the	comparisons	by	the	exemplar	model	is	nonlinear;	hence,
the	 summed	 individual	 similarities	 differ	 from	 that	 involving	 the	 average.	 This	 nonlinearity
turns	out	to	be	crucial	to	the	model’s	overall	power.	The	fact	that	subtle	matters	of	arithmetic
can	have	such	drastic	consequences	further	reinforces	the	notion	that	purely	verbal	theorizing
is	of	limited	value.
4.	 	Another	 lesson	 that	 can	be	 drawn	 from	 this	 example	 is	 a	 rejoinder	 to	 the	 popular	 but

largely	misplaced	criticism	that	with	enough	ingenuity	and	patience,	a	modeler	can	always	get
a	model	to	work.
5.		Several	distinctions	between	models	have	been	proposed	(e.g.,	Luce,	1995);	ours	differs

from	 relevant	 precedents	 by	 being	 explicitly	 psychological	 and	 being	 driven	 entirely	 by
considerations	that	are	relevant	to	the	cognitive	researcher.
6.	 	We	will	provide	a	detailed	definition	of	what	a	parameter	is	in	Chapter	2.	For	now,	 it

suffices	 to	 think	 of	 a	 parameter	 as	 a	 number	 that	 carries	 important	 information	 and	 that
determines	the	behavior	of	the	model.
7.		Some	readers	may	have	noticed	that	in	this	instance,	there	are	two	parameters	(I	and	R)

and	 two	 data	 points	 (proportion	 correct	 and	 errors;	 C	 and	 R),	 which	 renders	 the	 model
nonidentifiable.	 We	 ignore	 this	 issue	 here	 for	 simplicity	 of	 exposition;	 for	 a	 solution,	 see
Hulme	et	al.	(1997).
8.		This	model	is	a	connectionist	model,	and	these	are	discussed	further	in	Chapter	8.
9.For	 simplicity,	 we	 omit	 discussion	 of	 how	 these	 psychological	 distances	 relate	 to	 the

physical	measurement	(e.g.,	 line	length	in	cm)	of	 the	stimuli;	 these	issues	are	covered	in,	for
example,	Nosofsky	(1986).
10.	 	Of	 course,	 a	 cognitive	model	may	 leave	 other	 levels	 of	 explanation	 unspecified,	 for

example,	the	underlying	neural	circuitry.	However,	at	the	level	of	abstraction	within	which	the
model	is	formulated,	nothing	can	be	left	unspecified.
11.	 	 Throughout	 this	 book,	 we	 use	 the	 terms	 falsifiable	 and	 testable	 interchangeably	 to

denote	 the	same	idea—namely,	 that	at	 least	 in	principle,	 there	are	some	possible	outcome(s)
that	are	incompatible	with	the	theory’s	predictions.
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12.	 	Despite	its	falsifiability,	Darwin’s	theory	has	a	perfect	 track	record	of	 its	predictions
being	uniformly	confirmed;	Coyne	(2009)	provides	an	insightful	account	of	the	impressive	list
of	successes.
13.		It	is	important	to	clarify	that,	in	our	view,	this	argument	should	apply	only	with	respect

to	a	particular	measurement.	That	is,	for	any	given	measurement,	we	prefer	theories	that	could
have	 only	 predicted	 a	 subset	 of	 all	 possible	 observations	 over	 theories	 that	 could	 have
predicted	pretty	much	any	outcome.	However,	 it	does	not	follow	that	we	prefer	 theories	 that
are	so	narrow	in	scope	that	they	only	apply	to	a	single	experiment;	on	the	contrary,	we	prefer
theories	that	apply	to	a	range	of	different	situations.
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