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CHAPTER

real-word
errors

Spelling Correction and the
Noisy Channel

ALGERNON: But my own sweet Cecily, I have never written you any letters.

CECILY: You need hardly remind me of that, Ernest. I remember only too well

that I was forced to write your letters for you. I wrote always three times a week,

and sometimes oftener.

ALGERNON: Oh, do let me read them, Cecily?

CECILY: Oh, I couldn’t possibly. They would make you far too conceited. The

three you wrote me after 1 had broken off the engagement are so beautiful, and

so badly spelled, that even now I can hardly read them without crying a little.
Oscar Wilde, The Importance of Being Earnest

Like Oscar Wilde’s fabulous Cecily, a lot of people were thinking about spelling
during the last turn of the century. Gilbert and Sullivan provide many examples. The
Gondoliers’ Giuseppe, for example, worries that his private secretary is “shaky in his
spelling”, while lolanthe’s Phyllis can “spell every word that she uses”. Thorstein
Veblen’s explanation (in his 1899 classic The Theory of the Leisure Class) was that
a main purpose of the “archaic, cumbrous, and ineffective” English spelling system
was to be difficult enough to provide a test of membership in the leisure class.

Whatever the social role of spelling, we can certainly agree that many more of
us are like Cecily than like Phyllis. Estimates for the frequency of spelling errors
in human-typed text vary from 1-2% for carefully retyping already printed text to
10-15% for web queries.

In this chapter we introduce the problem of detecting and correcting spelling
errors. Fixing spelling errors is an integral part of writing in the modern world,
whether this writing is part of texting on a phone, sending email, writing longer
documents, or finding information on the web. Modern spell correctors aren’t perfect
(indeed, autocorrect-gone-wrong is a popular source of amusement on the web) but
they are ubiquitous in pretty much any software that relies on keyboard input.

Spelling correction is often considered from two perspectives. Non-word spelling
correction is the detection and correction of spelling errors that result in non-words
(like graffe for giraffe). By contrast, real word spelling correction is the task of
detecting and correcting spelling errors even if they accidentally result in an actual
word of English (real-word errors). This can happen from typographical errors
(insertion, deletion, transposition) that accidentally produce a real word (e.g., there
for three), or cognitive errors where the writer substituted the wrong spelling of a
homophone or near-homophone (e.g., dessert for desert, or piece for peace).

Non-word errors are detected by looking for any word not found in a dictio-
nary. For example, the misspelling graffe above would not occur in a dictionary.
The larger the dictionary the better; modern systems often use enormous dictio-
naries derived from the web. To correct non-word spelling errors we first generate
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candidates

candidates: real words that have a similar letter sequence to the error. Candidate
corrections from the spelling error graffe might include giraffe, graf, gaffe, grail, or
craft. We then rank the candidates using a distance metric between the source and
the surface error. We’d like a metric that shares our intuition that giraffe is a more
likely source than grail for graffe because giraffe is closer in spelling to graffe than
grail is to graffe. The minimum edit distance algorithm from Chapter 2 will play a
role here. But we’d also like to prefer corrections that are more frequent words, or
more likely to occur in the context of the error. The noisy channel model introduced
in the next section offers a way to formalize this intuition.

Real word spelling error detection is a much more difficult task, since any word
in the input text could be an error. Still, it is possible to use the noisy channel to find
candidates for each word w typed by the user, and rank the correction that is most
likely to have been the users original intention.

B.1 The Noisy Channel Model

noisy channel

Bayesian

In this section we introduce the noisy channel model and show how to apply it to
the task of detecting and correcting spelling errors. The noisy channel model was
applied to the spelling correction task at about the same time by researchers at AT&T
Bell Laboratories (Kernighan et al. 1990, Church and Gale 1991) and IBM Watson
Research (Mays et al., 1991).

original word

guessed word
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In the noisy channel model, we imagine that the surface form we see is actually
a “distorted” form of an original word passed through a noisy channel. The decoder passes
each hypothesis through a model of this channel and picks the word that best matches the
surface noisy word.

The intuition of the noisy channel model (see Fig. B.1) is to treat the misspelled
word as if a correctly spelled word had been “distorted” by being passed through a
noisy communication channel.

This channel introduces “noise” in the form of substitutions or other changes to
the letters, making it hard to recognize the “true” word. Our goal, then, is to build a
model of the channel. Given this model, we then find the true word by passing every
word of the language through our model of the noisy channel and seeing which one
comes the closest to the misspelled word.

This noisy channel model is a kind of Bayesian inference. We see an obser-
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vation x (a misspelled word) and our job is to find the word w that generated this
misspelled word. Out of all possible words in the vocabulary V we want to find the
word w such that P(w|x) is highest. We use the hat notation * to mean “our estimate
of the correct word”.

W = argmax P(w]x) (B.1)
wevV
The function argmax, f(x) means “the x such that f(x) is maximized”. Equa-
tion B.1 thus means, that out of all words in the vocabulary, we want the particular
word that maximizes the right-hand side P(w|x).
The intuition of Bayesian classification is to use Bayes’ rule to transform Eq. B.1
into a set of other probabilities. Bayes’ rule is presented in Eq. B.2; it gives us a way
to break down any conditional probability P(a|b) into three other probabilities:

P(bla)P(a)
P(a|b) = ———~— B.2
(@) = =555 (2)
We can then substitute Eq. B.2 into Eq. B.1 to get Eq. B.3:
P P
W = argmax M (B.3)

weV P(x)

We can conveniently simplify Eq. B.3 by dropping the denominator P(x). Why
is that? Since we are choosing a potential correction word out of all words, we will

be computing W for each word. But P(x) doesn’t change for each word; we

are always asking about the most likely word for the same observed error x, which
must have the same probability P(x). Thus, we can choose the word that maximizes
this simpler formula:

W = argmax P(x|w) P(w) (B.4)
wevV

To summarize, the noisy channel model says that we have some true underlying
word w, and we have a noisy channel that modifies the word into some possible
misspelled observed surface form. The likelihood or channel model of the noisy
channel producing any particular observation sequence x is modeled by P(x|w). The
prior probability of a hidden word is modeled by P(w). We can compute the most
probable word W given that we’ve seen some observed misspelling x by multiply-
ing the prior P(w) and the likelihood P(x|w) and choosing the word for which this
product is greatest.

We apply the noisy channel approach to correcting non-word spelling errors by
taking any word not in our spell dictionary, generating a list of candidate words,
ranking them according to Eq. B.4, and picking the highest-ranked one. We can
modify Eq. B.4 to refer to this list of candidate words instead of the full vocabulary

V as follows: .
channel model prior
—~N —~ =

Ww=argmax  P(x|w) P(w) (B.5)
weC
The noisy channel algorithm is shown in Fig. B.2.
To see the details of the computation of the likelihood and the prior (language
model), let’s walk through an example, applying the algorithm to the example mis-
spelling acress. The first stage of the algorithm proposes candidate corrections by



4 APPENDIX B e SPELLING CORRECTION AND THE NOISY CHANNEL

Damerau-
Levenshtein

channel model

function NOI1SY CHANNEL SPELLING(word x,dict D,1m, editprob) returns correction

ifx¢ D
candidates, edits <— All strings at edit distance 1 from x that are € D, and their edit
for each c, e in candidates, edits
channel «— editprob(e)
prior < Im(x)
score[c] = log channel + log prior
return argmax,. score[c|

3T W] Noisy channel model for spelling correction for unknown words.

finding words that have a similar spelling to the input word. Analysis of spelling
error data has shown that the majority of spelling errors consist of a single-letter
change and so we often make the simplifying assumption that these candidates have
an edit distance of 1 from the error word. To find this list of candidates we’ll use
the minimum edit distance algorithm introduced in Chapter 2, but extended so that
in addition to insertions, deletions, and substitutions, we’ll add a fourth type of edit,
transpositions, in which two letters are swapped. The version of edit distance with
transposition is called Damerau-Levenshtein edit distance. Applying all such sin-
gle transformations to acress yields the list of candidate words in Fig. B.3.

Transformation
Correct  Error Position
Error Correction  Letter Letter (Letter#) Type

acress actress t — 2 deletion
acress  cress — a 0 insertion
acress caress ca ac 0 transposition
acress  access C r 2 substitution
acress  across o e 3 substitution
acress  acres — S 5 insertion
acress  acres — s 4 insertion
Candidate corrections for the misspelling acress and the transformations that
would have produced the error (after Kernighan et al. (1990)). “— represents a null letter.

Once we have a set of a candidates, to score each one using Eq. B.5 requires that
we compute the prior and the channel model.

The prior probability of each correction P(w) is the language model probability
of the word w in context, which can be computed using any language model, from
unigram to trigram or 4-gram. For this example let’s start in the following table by
assuming a unigram language model. We computed the language model from the
404,253,213 words in the Corpus of Contemporary English (COCA).

w count(w) p(w)
actress 9,321 .0000231
cress 220 .000000544
caress 686 .00000170

access 37,038 .0000916
across 120,844 .000299
acres 12,874 .0000318

How can we estimate the likelihood P(x|w), also called the channel model or
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error model? A perfect model of the probability that a word will be mistyped would
condition on all sorts of factors: who the typist was, whether the typist was left-
handed or right-handed, and so on. Luckily, we can get a pretty reasonable estimate
of P(x|w) just by looking at local context: the identity of the correct letter itself, the
misspelling, and the surrounding letters. For example, the letters m and n are often
substituted for each other; this is partly a fact about their identity (these two letters
are pronounced similarly and they are next to each other on the keyboard) and partly
a fact about context (because they are pronounced similarly and they occur in similar
contexts).

A simple model might estimate, for example, p(acress|across) just using the
number of times that the letter e was substituted for the letter o in some large corpus
of errors. To compute the probability for each edit in this way we’ll need a confu-
sion matrix that contains counts of errors. In general, a confusion matrix lists the
number of times one thing was confused with another. Thus for example a substi-
tution matrix will be a square matrix of size 26x26 (or more generally |A| x |A],
for an alphabet A) that represents the number of times one letter was incorrectly
used instead of another. Following Kernighan et al. (1990) we’ll use four confusion
matrices.

del[x,y]: count(xy typed as x)
ins[x,y]: count(x typed as xy)
sub[x, y]: count(x typed as y)
trans[x, y|: count(xy typed as yx)

Note that we’ve conditioned the insertion and deletion probabilities on the previ-
ous character; we could instead have chosen to condition on the following character.

Where do we get these confusion matrices? One way is to extract them from
lists of misspellings like the following:

additional: addional, additonal
environments: enviornments, enviorments, enviroments
preceded: preceeded

There are lists available on Wikipedia and from Roger Mitton (http://www.
dcs.bbk.ac.uk/~ROGER/corpora.html) and Peter Norvig (http://norvig.
com/ngrams/). Norvig also gives the counts for each single-character edit that can
be used to directly create the error model probabilities.

An alternative approach used by Kernighan et al. (1990) is to compute the ma-
trices by iteratively using this very spelling error correction algorithm itself. The
iterative algorithm first initializes the matrices with equal values; thus, any character
is equally likely to be deleted, equally likely to be substituted for any other char-
acter, etc. Next, the spelling error correction algorithm is run on a set of spelling
errors. Given the set of typos paired with their predicted corrections, the confusion
matrices can now be recomputed, the spelling algorithm run again, and so on. This
iterative algorithm is an instance of the important EM algorithm (Dempster et al.,
1977), which we discuss in Appendix B.

Once we have the confusion matrices, we can estimate P(x|w) as follows (where


http://www.dcs.bbk.ac.uk/~ROGER/corpora.html
http://www.dcs.bbk.ac.uk/~ROGER/corpora.html
http://norvig.com/ngrams/
http://norvig.com/ngrams/
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w; is the ith character of the correct word w) and x; is the ith character of the typo x:

del|x;_1,w;
delfxi,wi] , if deletion
countfx;_w]
ISRt 1] it i sertion
count[w;_1]

P(X|W) = Sub[xi7 Wi] . . . (B6)
————, if substitution
count[w;]

t ir Wi
transfwi, wi1] , if transposition
count[w;wi1]

Using the counts from Kernighan et al. (1990) results in the error model proba-
bilities for acress shown in Fig. B.4.

Candidate Correct Error

Correction Letter Letter xX|w P(x|w)
actress t - clct .000117
cress - a al# .00000144
caress ca ac ac|ca .00000164
access c r r|c .000000209
across o) e elo .0000093
acres - s es|e .0000321
acres - S ss|s .0000342

J3TuN VIR Channel model for acress; the probabilities are taken from the del[], ins[],
sub[], and trans[] confusion matrices as shown in Kernighan et al. (1990).

Figure B.5 shows the final probabilities for each of the potential corrections;
the unigram prior is multiplied by the likelihood (computed with Eq. B.6 and the
confusion matrices). The final column shows the product, multiplied by 10° just for

readability.

Candidate Correct Error

Correction Letter Letter x|w  P(x|w) P(w) 10°#P(x|w)P(w)
actress t - clct .000117 .0000231 2.7

cress - a al# .00000144 .000000544 0.00078
caress ca ac ac|ca .00000164 .00000170 0.0028

access C r r|c .000000209 .0000916  0.019

across o e elo .0000093 .000299 2.8

acres - s es|e .0000321 .0000318 1.0

acres - s ss|s .0000342 .0000318 1.0

IPICIE]  Computation of the ranking for each candidate correction, using the language
model shown earlier and the error model from Fig. B.4. The final score is multiplied by 10°
for readability.

The computations in Fig. B.5 show that our implementation of the noisy channel
model chooses across as the best correction, and actress as the second most
likely word.

Unfortunately, the algorithm was wrong here; the writer’s intention becomes
clear from the context: ...was called a “stellar and versatile acress whose com-
bination of sass and glamour has defined her...”. The surrounding words make it
clear that actress and not across was the intended word.
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For this reason, it is important to use larger language models than unigrams.
For example, if we use the Corpus of Contemporary American English to compute
bigram probabilities for the words actress and across in their context using add-one
smoothing, we get the following probabilities:

P(actress|versatile) = .000021
P(across|versatile) = .000021
P(whoselactress) = .0010
P(whose|across) = .000006

Multiplying these out gives us the language model estimate for the two candi-
dates in context:

P(“versatile actress whose™) = .000021%.0010 =210 x 10~ '°
P(“versatile across whose™) = .000021 %.000006 = 1 x 10~1°

Combining the language model with the error model in Fig. B.5, the bigram
noisy channel model now chooses the correct word actress.

Evaluating spell correction algorithms is generally done by holding out a train-
ing, development and test set from lists of errors like those on the Norvig and Mitton
sites mentioned above.

B.2 Real-word spelling errors

The noisy channel approach can also be applied to detect and correct real-word

real-word error gpelling errors, errors that result in an actual word of English. This can happen from
typographical errors (insertion, deletion, transposition) that accidentally produce a
real word (e.g., there for three) or because the writer substituted the wrong spelling
of a homophone or near-homophone (e.g., dessert for desert, or piece for peace). A
number of studies suggest that between 25% and 40% of spelling errors are valid
English words as in the following examples (Kukich, 1992):

This used to belong to thew queen. They are leaving in about fifteen minuets to go to her house.
The design an construction of the system will take more than a year.

Can they lave him my messages?

The study was conducted mainly be John Black.

The noisy channel can deal with real-word errors as well. Let’s begin with a
version of the noisy channel model first proposed by Mays et al. (1991) to deal
with these real-word spelling errors. Their algorithm takes the input sentence X =
{x1,%2,..., Xk, ..., Xn}, generates a large set of candidate correction sentences C(X),
then picks the sentence with the highest language model probability.

To generate the candidate correction sentences, we start by generating a set of
candidate words for each input word x;. The candidates, C(x;), include every English
word with a small edit distance from x;. With edit distance 1, a common choice
(Mays et al., 1991), the candidate set for the real word error thew (a rare word
meaning ‘muscular strength’) might be C(thew) = {the, thaw, threw, them, thwe}.
We then make the simplifying assumption that every sentence has only one error.
Thus the set of candidate sentences C(X) for a sentence X = Only two of thew
apples would be:
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only two of thew apples
oily two of thew apples
only too of thew apples
only to of thew apples

only tao of the apples

only two on thew apples
only two off thew apples
only two of the apples

only two of threw apples
only two of thew applies
only two of thew dapples

Each sentence is scored by the noisy channel:

W = argmax P(X|W) P(W) (B.7)
weC(X)

For P(W), we can use the trigram probability of the sentence.

What about the channel model? Since these are real words, we need to consider
the possibility that the input word is not an error. Let’s say that the channel proba-
bility of writing a word correctly, P(w|w), is a; we can make different assumptions
about exactly what the value of « is in different tasks; perhaps o is .95, assum-
ing people write 1 word wrong out of 20, for some tasks, or maybe .99 for others.
Mays et al. (1991) proposed a simple model: given a typed word x, let the channel
model P(x|w) be o when x = w, and then just distribute 1 — o evenly over all other
candidate corrections C(x):

o if x=w
11—« .
paw) =4 eoyp TFECW (B.8)
0 otherwise

Now we can replace the equal distribution of 1 — & over all corrections in Eq. B.8;
we’ll make the distribution proportional to the edit probability from the more sophis-
ticated channel model from Eq. B.6 that used the confusion matrices.

Let’s see an example of this integrated noisy channel model applied to a real
word. Suppose we see the string two of thew. The author might have intended
to type the real word thew (‘muscular strength’). But thew here could also be a
typo for the or some other word. For the purposes of this example let’s consider
edit distance 1, and only the following five candidates the, thaw, threw, and thwe
(a rare name) and the string as typed, thew. We took the edit probabilities from
Norvig’s (2009) analysis of this example. For the language model probabilities, we
used a Stupid Backoff model (Section ??) trained on the Google N-grams:

P(the|two of) 0.476012
P(thew|two of) = 9.95051 x10~8
P(thaw|two of) 2.09267 x10~7
P(threw|two of) = 8.9064 x 10’
P(them|two of) 0.001444388
P(thwe|two of) 5.18681 x107?

Here we’ve just computed probabilities for the single phrase rwo of thew, but
the model applies to entire sentences; so if the example in context was two of thew
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people, we’d need to also multiply in probabilities for P(people|of the), P(people|of
thew), P(people|of threw), and so on.

Following Norvig (2009), we assume that the probability of a word being a typo
in this task is .05, meaning that & = P(w|w) is .95. Fig. B.6 shows the computation.

X W X|W P(X‘W) P(w|wi,2,wi,1) IOSP(X|W)P(W|Wi,2,Wi,1)
thew the ewle 0.000007 0.48 333

thew thew =095 9.95 x1078 9.45

thew thaw ela  0.001 2.1 x1077 0.0209

thew threw h|hr  0.000008 8.9 x10~7 0.000713

thew thwe ew|we 0.000003 5.2 x10~° 0.00000156

I3t IIRY  The noisy channel model on 5 possible candidates for thew, with a Stupid
Backoff trigram language model computed from the Google N-gram corpus and the error
model from Norvig (2009).

For the error phrase two of thew, the model correctly picks the as the correction.
But note that a lower error rate might change things; in a task where the probability
of an error is low enough (¢ is very high), the model might instead decide that the
word thew was what the writer intended.

B.3 Noisy Channel Model: The State of the Art

autocorrect

State of the art implementations of noisy channel spelling correction make a number
of extensions to the simple models we presented above.

First, rather than make the assumption that the input sentence has only a sin-
gle error, modern systems go through the input one word at a time, using the noisy
channel to make a decision for that word. But if we just run the basic noisy chan-
nel system described above on each word, it is prone to overcorrecting, replacing
correct but rare words (for example names) with more frequent words (Whitelaw
et al. 2009, Wilcox-O’Hearn 2014). Modern algorithms therefore need to augment
the noisy channel with methods for detecting whether or not a real word should ac-
tually be corrected. For example state of the art systems like Google’s (Whitelaw
et al., 2009) use a blacklist, forbidding certain tokens (like numbers, punctuation,
and single letter words) from being changed. Such systems are also more cautious
in deciding whether to trust a candidate correction. Instead of just choosing a candi-
date correction if it has a higher probability P(w|x) than the word itself, these more
careful systems choose to suggest a correction w over keeping the non-correction x
only if the difference in probabilities is sufficiently great. The best correction w is
chosen only if:

log P(w|x) —log P(x|x) > 6

Depending on the specific application, spell-checkers may decide to autocorrect
(automatically change a spelling to a hypothesized correction) or merely to flag the
error and offer suggestions. This decision is often made by another classifier which
decides whether the best candidate is good enough, using features such as the dif-
ference in log probabilities between the candidates (we’ll introduce algorithms for
classification in the next chapter).

Modern systems also use much larger dictionaries than early systems. Ahmad
and Kondrak (2005) found that a 100,000 word UNIX dictionary only contained
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confusion sets

73% of the word types in their corpus of web queries, missing words like pics,
multiplayer, google, xbox, clipart, and mallorca. For this reason modern systems
often use much larger dictionaries automatically derived from very large lists of
unigrams like the Google N-gram corpus. Whitelaw et al. (2009), for example,
used the most frequently occurring ten million word types in a large sample of web
pages. Because this list will include lots of misspellings, their system requires a
more sophisticated error model. The fact that words are generally more frequent than
their misspellings can be used in candidate suggestion, by building a set of words
and spelling variations that have similar contexts, sorting by frequency, treating the
most frequent variant as the source, and learning an error model from the difference,
whether from web text (Whitelaw et al., 2009) or from query logs (Cucerzan and
Brill, 2004). Words can also be automatically added to the dictionary when a user
rejects a correction, and systems running on phones can automatically add words
from the user’s address book or calendar.

We can also improve the performance of the noisy channel model by changing
how the prior and the likelihood are combined. In the standard model they are just
multiplied together. But often these probabilities are not commensurate; the lan-
guage model or the channel model might have very different ranges. Alternatively
for some task or dataset we might have reason to trust one of the two models more.
Therefore we use a weighted combination, by raising one of the factors to a power

A

W = argmax P(x|w) P(w)* (B.9)
weV
or in log space:
W = argmaxlog P(x|w) + A log P(w) (B.10)
wevV

We then tune the parameter A on a development test set.

Finally, if our goal is to do real-word spelling correction only for specific con-
fusion sets like peace/piece, affect/effect, weather/whether, or even grammar cor-
rection examples like among/between, we can train supervised classifiers to draw on
many features of the context and make a choice between the two candidates. Such
classifiers can achieve very high accuracy for these specific sets, especially when
drawing on large-scale features from web statistics (Golding and Roth 1999, Lapata
and Keller 2004, Bergsma et al. 2009, Bergsma et al. 2010).

B.3.1 Improved Edit Models: Partitions and Pronunciation

Other recent research has focused on improving the channel model P(t|c). One
important extension is the ability to compute probabilities for multiple-letter trans-
formations. For example Brill and Moore (2000) propose a channel model that (in-
formally) models an error as being generated by a typist first choosing a word, then
choosing a partition of the letters of that word, and then typing each partition, pos-
sibly erroneously. For example, imagine a person chooses the word physical,
then chooses the partition ph y s i ¢ al She would then generate each parti-
tion, possible with errors. For example the probability that she would generate the
string fisikle with partition £ 1 s i k le would be p(£f|ph) x p(ily) * p(s|s) *
p(i]i)*p(k|k)* p(Lle|al). Unlike the Damerau-Levenshtein edit distance, the Brill-
Moore channel model can thus model edit probabilities like P(f|ph) or P(1e|al), or
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the high likelihood of P(ent|ant). Furthermore, each edit is conditioned on where
it is in the word (beginning, middle, end) so instead of P(f|ph) the model actually
estimates P(f|ph, beginning).

More formally, let R be a partition of the typo string x into adjacent (possibly
empty) substrings, and T be a partition of the candidate string. Brill and Moore
(2000) then approximates the total likelihood P(x|w) (e.g., P(fisikle|physical))
by the probability of the single best partition:

IR|
P(xlw)~  max P(T;|R;, position B.11
(x[w) R’T”'lT‘:‘Rl; (Ti|Ri,p ) ( )
The probability of each transform P(T;|R;) can be learned from a training set of
triples of an error, the correct string, and the number of times it occurs. For example

given a training pair akgsual/actual, standard minimum edit distance is used to
produce an alignment:

al/a k/c t\su\ua\al\1

This alignment corresponds to the sequence of edit operations:
a—a, c—k, €—g t—s, u—u, a—a, 1—1

Each nonmatch substitution is then expanded to incorporate up to N additional
edits; For N=2, we would expand c—k to:

ac—ak
c—cg
ac—akg
ct—kgs

Each of these multiple edits then gets a fractional count, and the probability for

each edit o — f is then estimated from counts in the training corpus of triples as
count(a—p)
count(a)
Another research direction in channel models is the use of pronunciation in ad-

dition to spelling. Pronunciation is an important feature in some non-noisy-channel
algorithms for spell correction like the GNU aspell algorithm (Atkinson, 2011),
which makes use of the metaphone pronunciation of a word (Philips, 1990). Meta-
phone is a series of rules that map a word to a normalized representation of its
pronunciation. Some example rules:

e “Drop duplicate adjacent letters, except for C.”
e “If the word begins with ‘KN’, ‘GN’, ‘PN’, ‘AE’, “WR’, drop the first letter.”
e “Drop ‘B’ if after ‘M’ and if it is at the end of the word”

Aspell works similarly to the channel component of the noisy channel model, finding
all words in the dictionary whose pronunciation string is a short edit distance (1 or
2 pronunciation letters) from the typo, and then scoring this list of candidates by
a metric that combines two edit distances: the pronunciation edit distance and the
weighted letter edit distance.

Pronunciation can also be incorporated directly the noisy channel model. For ex-
ample the Toutanova and Moore (2002) model, like aspell, interpolates two channel
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function SOUNDEX(name) returns soundex form

1. Keep the first letter of name
2. Drop all occurrences of non-initial a, e, h, 1, o, u, w, y.
3. Replace the remaining letters with the following numbers:

b, f,p,v—1

¢ g].kq,8,x,z2—2

dt —3

1—4

m,n—5

r—6
4. Replace any sequences of identical numbers, only if they derive from two or more
letters that were adjacent in the original name, with a single number (e.g., 666 — 6).
5. Convert to the form Letter Digit Digit Digit by dropping digits past the third
(if necessary) or padding with trailing zeros (if necessary).

IBTICY i  The Soundex Algorithm

models, one based on spelling and one based on pronunciation. The pronunciation
letter-to-sound ~ model is based on using letter-to-sound models to translate each input word and
phones  each dictionary word into a sequences of phones representing the pronunciation of
the word. For example actress and aktress would both map to the phone string
ae k t r ix s. See Chapter 28 on the task of letter-to-sound or grapheme-to-
phoneme.

Some additional string distance functions have been proposed for dealing specif-
deduplication  jcally with names. These are mainly used for the task of deduplication (deciding if
two names in a census list or other namelist are the same) rather than spell-checking.
The Soundex algorithm (Knuth 1973, Odell and Russell 1922) is an older method
used originally for census records for representing people’s names. It has the advan-
tage that versions of the names that are slightly misspelled will still have the same
representation as correctly spelled names. (e.g., Jurafsky, Jarofsky, Jarovsky, and

Jarovski all map to J612). The algorithm is shown in Fig. B.7.

Jaro-Winkler Instead of Soundex, more recent work uses Jaro-Winkler distance, which is
an edit distance algorithm designed for names that allows characters to be moved
longer distances in longer names, and also gives a higher similarity to strings that
have identical initial characters (Winkler, 2006).

Bibliographical and Historical Notes

Algorithms for spelling error detection and correction have existed since at least
Blair (1960). Most early algorithms were based on similarity keys like the Soundex
algorithm (Odell and Russell 1922, Knuth 1973). Damerau (1964) gave a dictionary-
based algorithm for error detection; most error-detection algorithms since then have
been based on dictionaries. Early research (Peterson, 1986) had suggested that
spelling dictionaries might need to be kept small because large dictionaries con-
tain very rare words (wont, veery) that resemble misspellings of other words, but
Damerau and Mays (1989) found that in practice larger dictionaries proved more
helpful. Damerau (1964) also gave a correction algorithm that worked for single
eITOorS.

The idea of modeling language transmission as a Markov source passed through
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a noisy channel model was developed very early on by Claude Shannon (1948).
The idea of combining a prior and a likelihood to deal with the noisy channel was
developed at IBM Research by Raviv (1967), for the similar task of optical char-
acter recognition (OCR). While earlier spell-checkers like Kashyap and Oommen
(1983) had used likelihood-based models of edit distance, the idea of combining a
prior and a likelihood seems not to have been applied to the spelling correction task
until researchers at AT&T Bell Laboratories (Kernighan et al. 1990, Church and
Gale 1991) and IBM Watson Research (Mays et al., 1991) roughly simultaneously
proposed noisy channel spelling correction. Much later, the Mays et al. (1991) algo-
rithm was reimplemented and tested on standard datasets by Wilcox-O’Hearn et al.
(2008), who showed its high performance.

Most algorithms since Wagner and Fischer (1974) have relied on dynamic pro-
gramming.

Recent focus has been on using the web both for language models and for train-
ing the error model, and on incorporating additional features in spelling, like the
pronunciation models described earlier, or other information like parses or semantic
relatedness (Jones and Martin 1997, Hirst and Budanitsky 2005).

See Mitton (1987) for a survey of human spelling errors, and Kukich (1992)
for an early survey of spelling error detection and correction. Norvig (2007) gives
a nice explanation and a Python implementation of the noisy channel model, with
more details and an efficient algorithm presented in Norvig (2009).

Exercises

B.1 Suppose we want to apply add-one smoothing to the likelihood term (channel
model) P(x|w) of a noisy channel model of spelling. For simplicity, pretend
that the only possible operation is deletion. The MLE estimate for deletion

is given in Eq. B.6, which is P(x|w) = % What is the estimate for
P(x|w) if we use add-one smoothing on the deletion edit model? Assume the
only characters we use are lower case a-z, that there are V word types in our

corpus, and N total characters, not counting spaces.
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