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ABSTRACT

Languages are governed by syntactic constraints—structural rules that determine which
sentences are grammatical in the language. In English, one such constraint is subject-verb
agreement, which dictates that the number of a verb must match the number of its
corresponding subject: “the dogs run”, but “the dog runs”. While this constraint appears to be
simple, in practice speakers make agreement errors, particularly when a noun phrase near the
verb differs in number from the subject (for example, a speaker might produce the
ungrammatical sentence “the key to the cabinets are rusty”). This phenomenon, referred to as
agreement attraction, is sensitive to a wide range of properties of the sentence; no single
existing model is able to generate predictions for the wide variety of materials studied in the
human experimental literature. We explore the viability of neural network language
models—broad-coverage systems trained to predict the next word in a corpus—as a
framework for addressing this limitation. We analyze the agreement errors made by Long
Short-Term Memory (LSTM) networks and compare them to those of humans. The models
successfully simulate certain results, such as the so-called number asymmetry and the
difference between attraction strength in grammatical and ungrammatical sentences, but failed
to simulate others, such as the effect of syntactic distance or notional (conceptual) number. We
further evaluate networks trained with explicit syntactic supervision, and find that this form of
supervision does not always lead to more human-like syntactic behavior. Finally, we show that
the corpus used to train a network significantly affects the pattern of agreement errors
produced by the network, and discuss the strengths and limitations of neural networks as a tool
for understanding human syntactic processing.

INTRODUCTION

Every language is governed by a set of syntactic constraints—rules that determine whether a
particular sentence is acceptable in that language. These rules are often independent of the
meaning of the sentence: although most listeners would be able to interpret either “the dog is
running” and “the dog are running” as referring to a running dog, only “the dog is running” is a
grammatical English sentence. A core goal of psycholinguistics is to determine how such syn-
tactic constraints are enforced in real-time sentence production and comprehension.

Amongst those syntactic constraints, agreement is both simple and extraordinarily wide-
spread. Put simply, an agreement constraint requires that two or more syntactic elements share
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a particular set of features. Most varieties of English exhibit subject-verb number agreement,
where subject noun phrases and their corresponding verbs must share their number feature:
they must either both be singular, or both be plural (e.g., “the dog runs,” but “the dogs run”).

While this constraint is simple to state, speakers sometimes fail to apply it correctly. Subject-
verb agreement errors are particularly likely to arise in sentences with an attractor: a noun
phrase with a number feature different than that of the subject (e.g., the attractor “cabinets”
might give rise to the erroneous “The key to the cabinets are rusty”; Bock & Miller, 1991).
These errors occur in both production and comprehension (Bock & Miller, 1991; Pearlmutter
et al., 1999), and are modulated by a number of factors, including, among others, the type of
syntactic constituent the attractor appears in (Bock & Cutting, 1992) and the linear or syntactic
distance from the attractor to the verb (Franck et al., 2002; Haskell & MacDonald, 2005;
Vigliocco & Nicol, 1998).

A complete theory of language comprehension and production must provide an account of
how syntactic constraints are enforced during processing and of the ways in which the com-
putations enforcing those constraints fail. While many proposals for such an account of agree-
ment mechanisms exist in the literature—Marking and Morphing (Eberhard et al., 2005),
Retrieval Interference (Badecker & Kuminiak, 2007; Wagers et al., 2009, etc.), and Feature
Percolation (Franck et al., 2002, etc.), among others—few proposals can account for the full
empirical picture. These accounts typically focus on a particular agreement phenomenon, and
do not attempt to be fully specified with respect to the wide array of other agreement phenom-
ena documented in the literature. For example, it is unclear how retrieval interference
accounts would predict notional number effects (Humphreys & Bock, 2005), and underspeci-
fication in parts of the model—for instance, the choice of retrieval cues available—makes it
difficult to ascertain whether this reflects a failure on the part of the account or a justification
for a different set of cues to handle this particular situation.

The goal of this paper is to work towards an alternative approach to constructing such a
comprehensive account of agreement processing. We leverage the success of the
broad-coverage neural network language models—that is, word prediction models—that are
widely used in applied language technologies. These language models are designed to take as
input a sequence of words and predict the following word in that sequence. They are typically
trained on a large corpus of naturally occurring text, which allows them to learn any number of
syntactic or semantic properties from their training data. They are provided no explicit super-
vision, and as such will only learn properties of the language that are helpful for their training
task: word prediction. We adopt these models for two reasons. First, unlike previous models of
agreement attraction, they are broad-coverage: they can take as input any sequence of words
and generate predictions for the next word. Second, neural network language models have
been shown to be generally capable of enforcing subject-verb agreement in English, while
making occasional agreement errors (Gulordava et al., 2018; Linzen et al., 2016). Taken
together, these properties allow us to efficiently derive agreement predictions from the models
for any set of sentences and compare the errors in those predictions to those made by humans.

Unlike traditional cognitive models, which explicitly implement the mechanisms that
researchers hypothesize are used by humans, processing mechanisms in neural language
models emerge naturally over the course of training. As a result, it is much more difficult to
describe in words the precise cognitive mechanism a neural network model implements.
Rather than interpret the exact mechanisms that govern a neural network model’s behavior,
it is often useful to understand the model in terms of the pressures that influence the kinds of
representations and mechanisms the model can learn. The processing mechanisms the model
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develops over the course of training are the product of two factors: first, the model’s inductive
biases, or the factors that lead a model to generalize in particular ways from its finite training
data (e.g., architecture, or optimization procedure); and second, the training data and task. As
such, characterizing the effect of these components on the outcome of learning serves as a
way of understanding the mechanism the model implements (i.e., a reasonable hypothesis
is that the model will implement the mechanism that is optimal to learn under the constraints
of architecture and task).

This suggests a paradigm through which we can characterize potential mechanisms under-
lying language processing behavior: manipulate a neural language model’s architecture or
training objective(s), and compare the behavior of those models to that of humans. By char-
acterizing the manipulations that result in models producing human-like behavior, we can
gain insight into the conditions under which human-like language processing can arise: do
particular learning pressures make human language processing strategies optimal? Does a
pressure toward a particular representational structure in addition to a word prediction objec-
tive make human error patterns emerge? Can we derive complex behavioral results from an
interaction of simple biases and learning pressures?

We adopt this approach to investigate whether pressure towards learning a particular, lin-
guistically motivated structural representation align neural network models more closely with
human behavior. We evaluate two types of models based on the Long-Short Term Memory
(LSTM) neural network architecture (Hochreiter & Schmidhuber, 1997): models trained solely
to predict the next word, and models trained to predict the next word and also labels from the
Combinatory Categorial Grammar (CCG) syntactic formalism. We derive predictions from
each of the two types of models for six sets of findings from the human agreement processing
literature. Both sets of models successfully simulated a number of empirical findings, but failed
to simulate others. Adding the explicit syntactic training objective had mixed results: in some
cases it aligned the models’ error patterns more closely with those of humans, but in other
cases it did not. We conduct follow-up analyses which suggest that even more sophisticated
syntactic pressures may be necessary to bring models closer to human behavior.

We then consider the other major kind of learning pressure: the training data. In our main
experiments, models were trained on a concatenation of a subset of English Wikipedia and the
CCGBank corpus of news articles (Hockenmaier & Steedman, 2007). We conduct follow-up
experiments where we trained models either solely on the Wikipedia subset or solely on
CCGBank. We found that both the size and genre of the training corpus affected the errors
the models made. We take this to suggest that (1) neural network language models used as
cognitive models may need to incorporate stronger inductive biases, not only to encourage
more human-like behavior, but also to reduce sensitivity to the composition of their training
corpora; and (2) researchers working on cognitive modeling with language models should aim
to train those models on corpora that accurately reflect the data humans learn from.

All of our LSTM models, which were trained on small to moderately-sized corpora by the
standard of the language technologies world, displayed larger overall error rates than humans.
This raises two questions: first, whether this is an issue with neural network models broadly, or
if it is just the result of the scale and architecture of the models we’ve chosen. Second, whether
aiming simply to reduce this error rate (by, for instance, training more powerful models) will
give us the human-like error patterns we are interested in. To address these questions, we con-
ducted additional follow-up simulations using the publicly available GPT-2 language model
(Radford et al., 2019), which was trained on many billions of words and is based on the Trans-
former neural network architecture (Vaswani et al., 2017). We found that, though GPT-2
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displays a lower overall error rate, this overall improvement does not translate into a more
human-like error pattern.

Before we describe our simulations in detail, we provide a brief introduction to agreement
and agreement attraction in English, and discuss related prior work modeling human language
processing with neural language models and how the present work fits into this landscape.

Subject-Verb Agreement and Agreement Attraction in English

Subject-Verb agreement is a constraint in many dialects of English that requires the number
feature of a subject to match the number of the corresponding verb, as in Example 1. A mis-
match in number features results in the ungrammatical Example 2.

(1) The key opens the door.
(2) *The key open the door.

This constraint holds regardless of what noun phrases (NPs) appear elsewhere in the sen-
tence, as shown in Example 3 and Example 4.

(3) The key to the cabinet opens/*open the door.
(4) The key to the cabinets opens/*open the door.

In practice, human behavior can deviate from this description. Agreement errors occur
occasionally in many contexts, and are particularly common in the presence of an NP whose
number feature does not match that of the subject, such as Example 4: in this example, a
higher error rate is expected compared to the minimally different Example 3 (Bock & Miller,
1991).

This pattern of errors was originally documented in the sentence completion paradigm. In
this paradigm, participants are given a prefix of a sentence up to but not including the main
verb, as in Example 5 or 6, and are tasked with completing the sentence:

(5) The key to the cabinets …
(6) The key to the cabinet …

The experimenter then determines if the participant produced a grammatical verb that
matches the number of the subject, like is, or an ungrammatical verb, like are. Following Bock
and Miller’s (1991) study, agreement attraction has also been documented in comprehension
(Parker & An, 2018; Pearlmutter et al., 1999; Wagers et al., 2009), and similar findings have
been reported across languages (Franck et al., 2002, 2006; Lorimor et al., 2008, among
others).

The magnitude of the agreement attraction effect—the difference in error rates between
Example 5 and 6, for example—is sensitive to a variety of factors, both syntactic (Bock &
Cutting, 1992; Franck et al., 2002, etc.) and semantic (Humphreys & Bock, 2005; Parker &
An, 2018, etc.). A number of theories have been proposed to explain the influence of these
factors on agreement; these include the Marking & Morphing model (Eberhard et al., 2005,
etc.), feature percolation accounts (Franck et al., 2002, etc.), and memory retrieval-based
accounts (Wagers et al., 2009, etc.). Each account is motivated by a particular subset of the
empirical findings that are best explained by that account: notional number effects motivate
the Marking & Morphing model (Humphreys & Bock, 2005, etc.), syntactic distance effects
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motivate feature percolation accounts (Bock & Cutting, 1992; Franck et al., 2002, etc.), and
linear distance effects (e.g., Haskell & MacDonald, 2005) and grammaticality asymmetry
effects (Wagers et al., 2009) motivate memory retrieval-based models.

In this paper, we use neural networks to simulate six human experiments that span the three
groups of results that have motivated previous accounts. The findings of these experiments can
be summarized as follows: (1) attractors in prepositional phrases give rise to a stronger attrac-
tion effect than those in relative clauses, and plural attractors generate a stronger attraction
effect than singular attractors (Bock & Cutting, 1992); (2–3) attractors closer to the verb exert
a stronger attraction effect, whether distance is measured in syntactic (Franck et al., 2002) or
linear (Haskell & MacDonald, 2005) terms; (4) collective subjects with distributive readings
have higher rates of plural agreement than those with collective readings (Humphreys & Bock,
2005); (5) attractors in oblique arguments cause a larger attraction effect than those in core
arguments (Parker & An, 2018); and (6) attraction can be caused by attractors outside of the
clause containing the agreement dependency, and while attraction makes ungrammatical sen-
tences seem grammatical, it does not make grammatical sentences seem ungrammatical
(Wagers et al., 2009).

Subject-Verb Agreement in Neural Language Models

Most relevant prior work on neural language models has evaluated the extent to which neural
networks obey grammatical agreement constraints, and was not directly concerned with
comparing the networks’ errors to those made by humans. Elman (1991) evaluated Simple
Recurrent Networks (SRNs) trained to predict the next word in a small artificial corpus and
found that the models were capable of predicting the number of verbs accurately, even when
the subject and verb were separated by a relative clause. More recently, Linzen et al. (2016)
trained Long-Short Term Memory models (LSTMs) using a number of objectives, including
word prediction, and evaluated whether they predicted the correct number inflection of
the verb on preambles extracted from Wikipedia, which include naturally occurring attrac-
tors. While they concluded that word prediction alone was insufficient to learn agreement
dependencies from natural corpora, Gulordava et al. (2018) later reached a different conclu-
sion, demonstrating that a better trained LSTM language model could successfully learn
agreement dependencies through word prediction, even when evaluated on so-called “col-
orless green ideas” preambles that are stripped of any semantic content that could facilitate
agreement processing. Agreement across simple intervening noun phrases has also been a
consistent part of syntactic benchmarks for language models (Hu et al., 2020; Marvin &
Linzen, 2018; Warstadt et al., 2019, 2020), with modern models performing reasonably well,
though with some errors.

Taken together, this body of work provides robust evidence that neural network language
models are capable of representing subject-verb number agreement dependencies, though
these representations have their limitations. Yet it is much less clear what representations those
models employ for agreement dependencies, and how robust those representations are. One
line of work aiming to address this question for RNNs has found evidence for a single pair of
singular and plural units per model that represent number information for all subject-verb
relationships within a sentence (Lakretz et al., 2019, 2021). Another line of work analyzing
Transformer models (Vaswani et al., 2017), such as GPT-2 (Radford et al., 2019), suggests that
attraction effects may be the result of the transformer’s attention mechanism being subject to
the same sorts of similarity-based interference effects as cue-based models from the human
memory literature (Ryu & Lewis, 2021).
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As mentioned above, most prior work has not compared the neural networks’ detailed error
patterns to those of humans. One exception is Linzen and Leonard (2018), who found that the
models they trained exhibited agreement attraction errors, in general, as well as number asym-
metry effects (with plural noun phrases exerting a stronger attraction effects than singular
ones), but did not show higher error rates with attractors in prepositional phrases than with
attractors in relative clauses (as was found for humans by Bock & Cutting, 1992). However,
the models used by Linzen and Leonard (2018) were not word prediction models, but classi-
fiers trained solely to predict the number feature of the verb. This modeling setting is difficult to
compare to the rest of the literature, which is concerned with word prediction models. This
objective is also less cognitively plausible: unlike the classifier, which is focused only on verb
number prediction, humans need to learn and process all aspects of language at the same
time, and are not provided with explicit supervision about verb number.

Like Linzen and Leonard (2018), the current work aims to model the patterns of agreement
errors that humans produce. Unlike in their work, however, we use models trained on the
general, broad-coverage word prediction task, rather than models tailor-made for agreement
prediction. This requires us to use linking functions that relate the models’ probability distri-
bution over the upcoming word to human behavioral measures. We discuss these linking
hypotheses, as well as our modeling and statistical choices, in detail in the next section.

The goals of this work are distinct from but related to a line of work investigating the induc-
tive biases or types of training data necessary for models to acquire human-like syntactic capa-
bilities (McCoy, Frank, & Linzen, 2020; Wilcox et al., 2018, 2023; Yedetore et al., 2023, etc.).
While we are motivated by the fact that the language processing strategies acquired by neural
network are inherently learnable (which is not necessarily the case for all other cognitive
models), in this work our primary goal is modeling syntactic behavior in adults, rather than
modeling acquisition. This is most clearly seen in our use of an auxiliary syntactic training
objective to pressure our models to learn syntactic representations. We make no claims that
the training signal provided by this task is used in the same way during human language
acquisition; instead, we use this task to test the hypothesis that representations equivalent to
those learned by training on this task lead models to more human-like behavior. Another
distinction between these lines of work and ours lies in the kinds of data they seek to explain.
Both Wilcox et al. (2023) and the current work compare the syntactic abilities of humans and
neural networks. But we are primarily focused on modeling where human syntactic processing
fails, and what those errors reveal about human processing mechanisms, while Wilcox et al.
(2023), Yedetore et al. (2023), etc. are interested in syntactic phenomena that humans are largely
successful at but are purported to be difficult for simple neural models to learn (i.e., challenging
versions of the poverty of the stimulus argument; Chomsky, 1965, 1986).

METHODS

Language Models

Language models are natural language processing systems that assign probabilities to strings of
words in a language. In this work, we focus on autoregressive language models—models that
decompose the task of assigning probability to a sequence of words into the simpler task of
providing a probability distribution over the next word in a sequence given all prior words
(i.e., “predicting the next word word in a sequence”).1 We primarily use language models

1 Assigning probabilities to strings of words and providing a distribution over the next word in a sequence are
equivalent, since P(w1 … wn) = P(w1)P(w2 | w1)P(w3 | w1, …, w2) … P(wn | w1, …, wn) for words w1, …, wn.
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based on the LSTM architecture, a type of Recurrent Neural Network (RNN) architecture. We
briefly describe this neural network architecture in the remainder of this section.

RNNs transform a sequence of vector representations (representing, for example, words in a
sentence) into a single vector representation by iteratively merging a vector representation of
the left context (hi−1) with a vector representation of the input to the right of that context (wi)
until all of the vectors are merged. In Simple Recurrent Networks (SRNs, Elman, 1990), vectors
are merged using Equation 1. The weight matrices Wh and Ww are learned linear transforma-
tions that are applied to hi−1 and wi respectively; the outcomes are summed and transformed
by a non-linear activation function (in this case, the hyperbolic tangent function):

hi ¼ tanh Whhi−1 þWwwið Þ (1)

In a neural network language model, words from the training data are mapped to learned
vector embeddings, and sequences of those embeddings are fed into a neural network encoder
that, like the recurrent network described above, produces a single vector that represents that
sequence of words. That representation is then provided as the input to a linear decoder—a
learned linear transformation followed by a softmax operation—which outputs a probability
distribution over the model’s vocabulary (see Figure 1). The model’s task is to align this prob-
ability distribution with the empirical probability that any particular word in the model’s
vocabulary is the next word in the sequence. Before training, all of the model’s learned
weights—in a simple recurrent network, those are the embedding mappings, the two weight
matrices Wh and Ww, and the matrix representing the linear transformation in the
encoder—are randomly initialized, and so the model’s output probability distribution is essen-
tially random. For each training example, all of those weights are adjusted using stochastic
gradient descent so as to increase the likelihood of the true next word from the training data.

Our simulations primarily use LSTMs, a type of RNN that incorporates gating mechanisms
designed to maintain representations over longer sequences; these mechanisms mitigate the
issue that, due to successive merging operations, representations derived from early words
have little effect by the end of the sequence. These gating mechanisms yield better

Figure 1. In our language modeling setup, each word is mapped to a word vector. Each of those
representations is combined with a representation of all previous words (hi−1) using a recurrent neu-
ral network model (RNN ) to create a representation hi for all words up to word i. To generate a
prediction for word i, hi is fed into a linear decoder (L) to generate a distribution over word i. During
training, model weights (which determine RNN and L) are adjusted to maximize the probability of
the word that actually occurred in the sentence at position i.
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representations of long-distance dependencies (Bhatt et al., 2020), which makes them better
suited than SRNs for modeling agreement relations, and, in turn, agreement attraction. On a
conceptual level, however, LSTMs fundamentally operate by the same principles as SRNs:
they incrementally merge inputs from left to right using a trainable, parametrized function.

In order to evaluate whether more sophisticated model architectures and training regimes
can address issues of high error rates found in our LSTM-based models, we additionally con-
sider GPT-2 (Radford et al., 2019), a language model based on the Transformer architecture
(Vaswani et al., 2017). Unlike the RNN models described above, Transformer language
models do not predict the next word from a representation generated by an incremental
left-to-right composition operation. Instead, they construct representations using a mechanism
called self-attention, where the model has direct access to representations of prior words.
GPT-2 differs from our LSTMs in many dimensions, and thus direct comparisons between
the models are difficult. However, since Transformer models like GPT-2 have had great
success recently (including in modeling psycholinguistic data, e.g., Oh et al., 2022; Schrimpf
et al., 2021), we provide results for GPT-2 not as a part of any direct manipulation, but as an
indicator of how larger, more powerful language models fare in their ability to match human
agreement error behavior. To preview the results of our experiments, we find that GPT-2
models do perform better than LSTMs syntactically (i.e., they assign greater probability to
grammatical forms), but their errors do not uniformly pattern more like human errors than
LSTM errors do.

Model Architectures and Training Setup

For each of the six human experiments we discuss, we compare human behavior to simulation
results from the publicly available GPT-2 model, as well as two types of LSTM-based models
we train—models trained only on word prediction (LM-ONLY models) and multi-task models,
which are trained on both word prediction and Combinatory Categorial Grammar Supertagging
(LM+CCG; Steedman, 1987). The multi-task models are trained to predict, from a sequence of
words, not only the next word, but also the most recent word’s supertag—an enriched
part-of-speech tag that encodes local syntactic information (see Figure 2). Due to the rich

Figure 2. An example sequence of CCG supertags for the sentence The key to the cabinets is rusty.
Each supertag encodes how the corresponding word composes with its syntactic neighborhood.
The label Y/X denotes that the word it labels merges with a constituent of type X on its right to form
a constituent of type Y (as with the and key), and Y\X denotes the same, but with the constituent of
type X on its left (as with to the cabinets and the key). To predict supertags successfully, models must
learn to represent something akin to the underlying structure of the sentence. In many cases, know-
ing the sequence of supertags makes it possible to deterministically reconstruct the full parse of the
sentence.
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syntactic information contained in supertags, supertagging has been described as “almost
parsing” (Bangalore & Joshi, 1999), and so we hypothesize that jointly optimizing for both
supertagging and language modeling accuracy will imbue a model with an additional bias
toward learning more sophisticated syntactic representations (Enguehard et al., 2017; Qian
et al., 2021).

We trained five instances of each model. The weights of each of these instances was ran-
domly initialized separately; training multiple model instances with different initial weights
allows us to determine to what extent the behavior observed is dependent on particular initial
weights (McCoy, Min, & Linzen, 2020), much like group-level analyses in psychology. The five
LM-ONLY model instances were trained for 12 epochs over the 80 million words of English
Wikipedia used in Gulordava et al. (2018), concatenated with the approximately one million
words of the Wall Street Journal section of the Penn Treebank (WSJ Corpus; Marcus et al.,
1993). Following Gulordava et al. (2018), the RNN encoder in each model was a 2-layer
LSTM with 650 hidden units in each layer. LM-ONLY models achieved perplexities between
66.73 and 67.13 over the Wikipedia corpus’ test set.2

The five LM+CCG model instances were trained on both word prediction and supertagging:
in addition to the linear decoder that predicted the next word, a secondary linear decoder
predicted the current word’s supertag. The structure of this multi-classifier architecture is out-
lined in Figure 3. Word prediction was performed over the 80 million words taken from English
Wikipedia (Gulordava et al., 2018), supplemented with approximately one million words of
the WSJ Corpus. CCG supertagging was performed over CCGbank (Hockenmaier & Steedman,
2007), a version of the WSJ Corpus annotated with CCG derivations. The two training
objectives—word prediction and supertagging—were weighted equally in training. LM+
CCG models achieved language modeling perplexities ranging from 74.76 to 75.70 on the
Wikipedia test set, and assigned the highest likelihood to the correct CCG supertag between
84.1% and 84.5% of the time. This is substantially higher than the accuracy of a baseline that
selects the most frequent supertag for each word independent of its context, which is 71.2%

2 Since perplexities are sensitive to tokenization choices, it is difficult to compare perplexities across different
training set-ups to assess how well-trained a particular model is. Since model perplexities are very similar across
different instances of our models, we provide the top predictions of one model for sample preambles in Appen-
dix B to demonstrate what our model has learned during training.

Figure 3. An outline of the architecture used for the LM+CCG models. Using the internal repre-
sentation h5 constructed by an RNN encoder, classifier L1 generates a probability distribution over
possible next words w* and classifier L2 generates a probability distribution over possible supertags
c* for the current word.
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(Clark, 2002); this suggests that the models have learned a considerable amount about local
syntactic structure, and thus lends credence to our belief that our supertagging models learn
relatively sophisticated syntactic representations.

The models described so far were trained on the concatenation of two distinct corpora that
differ in both size and genre. Given the sharp differences between these two corpora, we also
trained two additional sets of models with the LM-ONLY architecture on each of those corpora
in order to determine whether a particular size or writing style affected the models’ agreement
behavior. Five model instances were trained on the 80 million word Wikipedia corpus, and
five were trained on the approximately one million words of the WSJ Corpus. Test-set
perplexities for models trained on Wikipedia data ranged between 67.66 and 68.15, and those
for models trained on WSJ data ranged between 55.32 and 56.13.

Finally, our GPT-2 simulations employed the “small” 124 million parameter GPT-2 model
(Radford et al., 2019), trained on roughly 40GB of text scraped from the internet. This model
achieves a perplexity of 65.85 over the WSJ Corpus. We remind the reader that due to differ-
ences in tokenization and test sets, perplexities in this sections are not directly comparable.

Linking Model Outputs to Human Behavior

The behavioral data in the experiments we simulate has one of two forms: the proportion of
singular verbs produced in a sentence completion paradigm, or the reading time of words in a
critical region in a self-paced reading study. Both paradigms are discussed in more detail in
this section. As we described in the prior sections, a language model takes as input a sequence
of words and outputs a probability distribution over the next word in that sequence. To com-
pare the performance of these models to that of humans, we need to link the language model’s
output to the behavioral responses recorded in the human experiments. This section discusses
how we select an appropriate linking function, and how we combine it with a language model
to construct what we will, in future sections, refer to simply as our (cognitive) model.3

Predicting Reading Times. The comprehension studies we simulate have employed the self-
paced reading paradigm. In self-paced reading, participants are presented with sentences
one word at a time; the next word is revealed after the participant presses a particular button.
The dependent measure is the time that elapses between two key presses (the displayed word’s
reading time). Longer reading times are taken to indicate greater processing difficulty caused
by the word currently being displayed, or by one of the words immediately preceding it.

In the context of agreement processing, reading times at the verb can indicate how accept-
able the participant finds the subject-verb agreement relation in question. The logic of this
paradigm relies on the observation that encountering an agreement violation incurs processing
cost, which leads to longer reading times at the verb or at the words immediately after it.
Agreement attraction can then surface in one of two manners: the amelioration of an agree-
ment error, where ungrammatical sentences are read faster when an attractor matches the
number of the verb, making it harder to detect the error; and the illusion of an agreement error,

3 We use the term “cognitive model” here only to distinguish the models we create, which aim to predict
human experimental measures like error rates and reading times, from the language models that underlie them,
which aim only to predict the next word. While our eventual goal is to use our cognitive models to investigate
the cognitive processes that generate those experimental measures, we do not use the term here to indicate that
these models provide an explicit, interpretable account of a particular human cognitive process. See the Gen-
eral Discussion for a further discussion of how these models relate to the more traditional cognitive models used
in psycholinguistics.
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where grammatical sentences are read slower when an attractor mismatches the number of
both the subject and verb (Pearlmutter et al., 1999; Wagers et al., 2009). We will discuss this
logic in more detail when we describe the two comprehension experiments we simulate.

In order to convert the probability distributions provided by language models into a mea-
sure comparable with reading times, we use surprisal (Hale, 2001; Levy, 2008), defined in
Equation 2.

Surprisal wið Þ ¼ − log2 P wi jw0;…;wi−1ð Þð Þ (2)

Note that the probability P(wi | w0, …, wi−1) is the probability that the ith word in the
sequence is wi, given that all of the prior words are w0, …, wi−1. This is precisely the proba-
bility distribution we obtain from a language model after it has been given w0, …, wi−1 as input.
The relationship between human reading times and surprisal estimated from a language model
in this fashion has been found to be approximately linear (Shain et al., 2024; Smith & Levy,
2013).

Predicting Verb Completions. The production studies we simulate all used the sentence com-
pletion paradigm briefly described above. In this paradigm, participants are asked to repeat
and complete a given preamble (in this case, a complex noun phrase), and their responses
are coded for the number feature of the verb they produce and whether the agreement relation
is grammatical. For example, when provided the preamble “The keys to the cabinet”, a par-
ticipant might respond with “The keys to the cabinet are on the table”, which would be coded
as a plural and grammatical response. Agreement attraction manifests as a higher error rate for
preambles where the attractor noun’s number mismatches the subject’s number compared to
preambles where the numbers of the two nouns match. To simulate such an experiment with
language models, we need to convert the output of the language model—a distribution over
the next word in the sentence—to the probabilities with which the model would produce a
singular or plural verb.

For our simulations, we will use what we will refer to as the ONE-SAMPLE linking function. This
function is equivalent to having the simulated production process decide on a verb form based
on a single sample from the underlying language model’s probability distribution (see the Gen-
eral Discussion for more details and the motivation for the name ONE-SAMPLE). Under this par-
adigm, we first select a candidate pair of singular and plural forms of a particular verb—for
example, is and are—and compute their probabilities under the distribution provided by the
language model. We then renormalize the probabilities over the two candidate words such
that they sum to 1, and take the renormalized probabilities as the probabilities with which
the model produces a singular or plural verb (see Figure 4).

Figure 4. To simulate a sentence completion experiment, a language model is given each pream-
ble as input, producing a probability distribution over the following word (a). The probabilities of a
candidate singular and plural verb are extracted from this distribution (b) and renormalized (c) and
this new distribution is taken to represent the probability with which the model would produce a
singular or plural verb.
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Experimental Stimuli

For each simulation, we aimed to use the stimuli provided in the publications that reported on
the relevant human experiment. This goal was complicated by the fact that the models can
only process words included in their training data; some of the more infrequent words in
the experimental stimuli did not occur in the training corpus at all, or were replaced during
training with a standard “unknown” (out-of-vocabulary) token (this is standard practice moti-
vated by the fact that language models are unable to learn appropriate vector representations
for words that occur a small number of times in the training corpus.) To deal with this issue, we
identified any out-of-vocabulary word that was a part of a noun phrase (and thus could poten-
tially contribute number information) or was manipulated in the simulated experiment’s design
and replaced it with a semantically similar, in-vocabulary word. Note that this necessarily
increases the frequency of the word as estimated using our training corpora, since the original
word did not appear in the models’ vocabularies—precisely because it fell under the
out-of-vocabulary frequency threshold—while the replacement word did appear in the vocab-
ulary. If the word was not in a noun phrase, or was not relevant to the experimental manip-
ulation, we did not attempt to find a substitute word, and replaced it with the
out-of-vocabulary token instead. A summary of the changes we made to the materials can
be found in Appendix C.

Due to the limited vocabulary of the models trained on the WSJ Corpus, a larger number of
words needed to be adjusted. To avoid editing experimental materials too significantly, we
limited our simulations based on these models to the three experiments that focused on syn-
tactic structure: Bock and Cutting (1992), Franck et al. (2002), and Haskell and MacDonald
(2005).

The candidate pairs of singular and plural verbs for production experiments were always
the present tense forms of the verb be. We made this choice this for two reasons: first, these
verbs appear with high frequency in the training data, and thus are likely to have number
information properly encoded in their vector representations; and second, these verbs are
plausible with nearly any subject noun phrase, and thus can be used across a wide variety
of stimuli. In Appendix A, we report a simulation of Bock and Cutting (1992) across a wider
variety of verbs to demonstrate that our results are largely robust to verb choice.

Statistical Analysis

For each of our statistical analyses, we first constructed a mixed-effects model with a maximal
mixed-effects structure, that is, random slopes and intercepts for each experimental item and
model instance. If the statistical model did not converge, the random effects structure was
incrementally pruned until convergence was reached. For all mixed-effects models reported
below, this procedure resulted in the inclusion of random intercepts only, for both items and
model instance.

For the analyses where the response variable was surprisal, we used linear mixed-effects
regression. For the analyses where the response variable was a probability, we used beta
mixed-effects regression (Ferrari & Cribari-Neto, 2004), which assumes that the dependent vari-
able (the probability of a particular inflection of the verb) is beta distributed. This assumption
bounds the value of the dependent variable between 0 and 1, as is appropriate for a proba-
bility. To test the significance of each fixed effect, we report the result of either a Wald test (for
beta mixed-effects models) or a t-test (for linear mixed-effects models). To test whether two
fixed effects are significantly different from each other, we report the results of a linear
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hypothesis test where we compare the fit of the original mixed-effects model to a model where
the two fixed effects in question are constrained to be equal.

SIMULATIONS

This section describes the results of simulations of the six experiments from the human liter-
ature that we examine in this paper. For each experiment, we lay out the motivation and
design of the experiment, describe the outcome of the human experiment, and report the
results of our simulations. In the Summary of Results section, we synthesize the results of
the simulations with respect to the three empirical questions we seek to answer: (1) what
agreement phenomena do LM-ONLY language models capture? (2) what effect does the addi-
tion of an explicit syntactic training objective have on a model’s agreement behavior? and (3)
how does a model’s agreement behavior depend on the corpus used to train the model?

Attractors in Prepositional Phrase vs. Relative Clauses

Background. The first three experiments we simulate investigate how hierarchical syntactic
structure affects agreement attraction. We first simulate Experiment 1 of Bock and Cutting
(1992), in which the authors tested whether attractors located within prepositional phrases
(PPs, Examples 7–8) exerted a stronger attraction effects than attractors within relative clauses
(RCs, Examples 9–10):

(7) The demo tape from the popular rock singer …
(8) The demo tape from the popular rock singers …
(9) The demo tape that promoted the rock singer …

(10) The demo tape that promoted the rock singers …

Human Results. Using the sentence completion paradigm (see Methods for further details),
Bock and Cutting (1992) compared the strength of the attraction effect within PPs (the differ-
ence in error rates between preambles like Example 7 and 8) to that within RCs (the difference
in error rates between Example 9 and 10). They found that attraction was stronger from attrac-
tors in PPs than attractors within RCs. They also documented a number asymmetry: there were
more attraction errors in sentences with singular subjects than in sentences with plural
subjects.

Simulation Results—Modifier Type. A comparison of the human results and simulations using
LM-ONLY and LM+CCG models is shown in Figure 5. Both types of models exhibited a signif-
icant attraction effect (LM-ONLY: β = 0.91, |z| = 34.19, p < 0.001; LM+CCG: β = 0.78, |z| =
24.14, p < 0.001). However, unlike humans, LM-ONLY models exhibited no interaction
between the attraction effect and the type of modifier the attractor appeared in (β = −0.017,
|z| = 0.66, p = 0.51). The LM+CCG models likewise showed no significant interaction (β =
−0.058, |z| = −1.18, p = 0.07). The three-way interaction between attraction, syntactic envi-
ronment (PP vs. RC), and model type (LM-ONLY vs. LM+CCG) found no evidence for any dif-
ference in the performance of the two types of models (β = 0.041, |z| = 1.00, p < 0.31). In
summary, neither type of model successfully simulated the human pattern.

Simulation Results—Number Asymmetry. Simulations using both models replicated the number
asymmetry (LM-ONLY: β = 0.20, |z| = 5.47, p < 0.001; LM+CCG: β = 0.34, |z| = 7.40, p <
0.001). There was a significant 3-way interaction between attraction, subject number, and
model type (β = −0.16, |z| = 2.66, p < 0.01), with LM+CCG exhibiting greater number
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asymmetry than LM-ONLY. In contrast to the effect of modifier type, then, the number asymme-
try effect was captured by both types of models and was stronger in LM+CCG models.

Sensitivity to Training Corpus. LM-ONLY models trained on the smaller WSJ Corpus displayed a
significant attraction effect (β = 0.85, p < 0.001, |z| = 24.14), and an interaction between the
attraction effect and the type of modifier (β = −0.09, p < 0.01, |z| = 2.63), such that attractors
led to more errors when they were in relatives clauses than when they were in prepositional
phrases. This effect was, crucially, in the opposite direction of that found in humans. Models
trained on the larger Wikipedia dataset also exhibited an attraction effect (β = 0.94, p < 0.001,
|z| = 8.32) but no interaction between that effect and modifier type (β = 0.0084, p = 0.76, |z| =
0.31). The Wikipedia-trained models exhibited a number asymmetry (β = 0.22, p < 0.001,
|z| = 5.60), while WSJ Corpus-trained models did not (β = 0.053, |z| = 1.08, p = 0.28). The
two types of models differed in the magnitude of the interaction between attraction and type of
modifier, as assessed by a three-way interaction (β = 0.15, |z| = 2.29, p < 0.05); this was also
the case for the analogous three-way interaction between model type, attraction and number
(β = 0.10, |z| = 2.31, p < 0.05).

This pattern of results suggests a strong influence of dataset on the ability to replicate the
difference in error rates between attractors in PPs and RCs, even with no difference in model
architecture or training objective. While models trained on the smaller WSJ Corpus produced
the wrong verb more often when the attractor was in an RC, models trained on the larger Wiki-
pedia dataset showed no difference in error rates between the two conditions. While neither
matched human behavior—more errors when attractors appear in PPs compared to
RCs—training on Wikipedia resulted in more human-like results than training on the WSJ
Corpus.

Overall Agreement Error Rates. Human error rates, even in the conditions in which error rates
were highest, were less than 15%. By contrast, models routinely made agreement errors in
more than 50% of trials when an attractor was present. Though this difference in magnitude
indicates that the models we trained are particularly susceptible to attraction errors, we take
this discrepancy to be largely orthogonal to the goals of our investigation. We are concerned
primarily with (1) whether our simple models exhibit agreement attraction (which high rates of

Figure 5. Human and simulation results for Bock and Cutting (1992). Vertical bars represent the
size of the attraction effect: the difference between the subject-attractor number match condition
(the lower, circular endpoints) and mismatch condition (the higher, square endpoints). Error bars
represent standard errors across the five randomly initialized models trained for each model archi-
tecture and training set. If the models simulate the relevant result from Bock and Cutting (1992), the
attraction effect in RCs (the length of the solid red bar) is smaller than that in PPs (the length of the
dashed blue-green bar). This pattern is reversed in LM-ONLY models trained on the WSJ Corpus, and
no significant difference is found between modifier types in all other models.
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agreement errors make apparent), (2) whether the factors we investigate modulate error rates in
the same way in humans and models, and (3) whether changes to the models’ training data or
training objective lead to more human-like behavior. Since these motivating questions con-
sider only how differences in error rates change across various conditions, we have no reason
to believe that high overall error rates are problematic for our analyses.

It is possible, of course, that modifications to our modeling setup that would reduce the
overall error rate could imbue models with inductive biases that also affect differences in error
rates across conditions. For instance, the LM-ONLY language models we use are chosen in part
due to the fact that they do not “build-in” sophisticated syntactic representations (compared to,
for instance, architectures that explicitly parse; Dyer et al., 2016). Since sophisticated syntactic
representations are key to identifying the subject and avoiding agreement errors, the high rate
of errors is tied directly to our choice of an small (in both number of parameters and quantity of
training data), simple, and unbiased model for this evaluation.

GPT-2. To address the concern with the LSTMs’ high overall agreement error rates, we repeat
our simulations with GPT-2, a stronger model based on the Transformer architecture. Overall,
GPT-2 error rates were smaller than, or roughly comparable to, human error rates in all con-
ditions (ranging between 1.2% and 7.7%). GPT-2 exhibited agreement attraction (β = 0.23;
|z| = 3.15; p < 0.005) as well as a number asymmetry (β = 0.24; |z| = 2.34; p < 0.05), but
showed no interaction between the attraction effect and the type of modifier the attractor
appeared in (β = 0.043; |z| = 0.59; p = 0.56). Thus, while GPT-2’s super-human overall error
rates suggest that more powerful models can compute agreement more accurately overall, this
increased overall accuracy does not necessarily lead to more human-like error patterns.

Syntactic vs. Linear Distance Effects on Attraction

Background. Franck et al. (2002) sought to further elucidate the role of syntactic structure in
agreement attraction, focusing on a specific question: do the processes underlying agreement
attraction operate over linear or hierarchical representations? To do so, they examined how
attraction errors are affected by the linear distance between the attractor and verb, and com-
pared the linear distance effect to the effect of the syntactic distance between those two words.
Consider Example 11:

(11) The threat(s) [PP to the president(s) [PP of the company(s)]] …

This sentence contains two potential attractors: the later one, company(s), appears within a
PP that modifies the earlier one, president(s). Since the PP that contains company(s) is embed-
ded within the PP that contains president(s), the path from company(s) to the verb along the
hierarchical structure of the sentence is longer than the path from president(s) to that verb (see
Figure 6). If we find that the lengths of these paths—what Franck et al. (2002) call the syntactic
distance between the attractor and the verb—are inversely proportional to the strength of the
attraction effect caused by the two noun phrases, then we have evidence that attraction errors
arise when participants process the hierarchical representations of the sentence. Franck et al.
(2002) contrast these syntactic distances with the linear distances from the attractors to the
verb. In terms of linear distance, company(s) is closer to the verb than president(s), simply
because company(s) appears to the right of president(s) in the linear sequence of words. Thus,
by comparing the strength of attraction from the first, syntactically closer noun phrase (i.e.,
president(s)) to attraction from the second, linearly closer noun phrase (i.e., company(s)), we
can investigate the nature of the structure (hierarchical or linear) used by humans or model
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during the agreement computations relevant to attraction: If the syntactically closer noun
phrase causes stronger attraction than the linearly closer one, we have evidence for the role
of hierarchical structure; if the difference is in the opposite direction, we have evidence for the
role of linear order.

Human Results. In Franck et al.’s (2002) experiment, syntactically closer attractors generated
stronger attraction effects than linearly closer ones.

LSTM Simulations. The comparison of interest for each model is between the attraction effects
caused by the syntactically closer attractor and that caused by the linearly closer attractor.
Consequently, in Figure 7 we plot the magnitude of the attraction effect for each attractor, col-
lapsing over the influence of the other attractor.

Both models displayed the opposite effect from humans: while there were significant effects
of both the linearly closer attractor (LM-ONLY: β = 0.79, |z| = 38.51, p < 0.001; LM+CCG: β =
0.75, |z| = 33.57, p < 0.001) and the syntactically closer one (LM-ONLY: β = 0.29, |z| = 14.48,
p < 0.001; LM+CCG: β = 0.28, |z| = 13.04, p < 0.001), linear effects were significantly stron-
ger than syntactic ones (LM-ONLY: χ2 = 336.21, p < 0.001; LM+CCG: χ2 = 254.47, p < 0.001).
A comparison between LM-ONLY and LM+CCG models did not find a significant difference in
either the linearly closer or syntactically closer attractor’s attraction effect between model
types (linearly closer: β = −0.020, |z| = 0.24, p = 0.80; syntactically closer: β = 0.013,
|z| = 0.18, p = 0.86), again indicating that, contrary to our hypothesis, adding the CCG training
objective did not make the models’ syntactic error patterns more human-like.

Effect of Training Corpus. Both sets of models trained on only a single corpus showed a signif-
icant effect of attraction from both the syntactically closer attractor (WSJ: β = 0.20, |z| = 8.022,
p < 0.001; Wiki: β = 0.26, p < 0.001, |z| = 12.65) and the linearly closer one (WSJ: β = 0.73,
p < 0.001, |z| = −27.17; Wiki: β = 0.85, p < 0.001, |z| = 40.06). However, in both cases, as in

Figure 6. A simplified syntactic representation of Example 11. Even though the first attractor, the
president(s), is more distant from the eventual position of the verb (within the T0) than the second
attractor, the company(s), it is closer to the verb in the syntactic structure: fewer nodes need to be
crossed to reach T0 from president(s).
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our prior experiments, the attraction effect from linearly closer attractors was much stronger
than the effect from syntactically closer attractors, the reverse of what Franck et al. (2002)
found in humans (WSJ: χ2 = 205.82, p < 0.001; Wiki: χ2 = 442.64, p < 0.001). A comparison
between the two models using two-way interactions revealed no significant differences in the
attraction effect caused by either of the attractors (linearly closer: β = 0.050, |z| = 0.53, p =
0.595; syntactically closer: β = −0.021, |z| = 0.226, p = 0.82).

GPT-2. GPT-2 showed a significant effect of attraction from both the syntactically closer
attractor (β = 0.41; |z| = 8.88; p < 0.001) and the linearly closer attractor (β = 0.10; |z| =
2.42; p < 0.05). Unlike the other models we evaluated, GPT-2 did show stronger effects from
the syntactically closer attractors (χ2 = 24.14; p < 0.001), as well as error rates across condi-
tions (ranging from 1.92% to 9.20%) on par with those observed in Franck et al. (2002)
(approximately 1.30–9.6%). In this case, then, GPT-2 was significantly closer to human behav-
ior than our weaker LSTM-based models, suggesting that one of the differences between the
models’ architecture of their training data aided in capturing syntactic distance effects.

Linear Distance Effects in Disjunction

Background. The two human experiments we have discussed so far suggested that agreement
attraction in humans is sensitive to hierarchical syntactic structure, but neither provided clear-
cut evidence as to whether or not humans are also sensitive to linear distance. In particular, in
the Franck et al. (2002) comparison between linear and syntactic distance effects, syntactic
distance was never held constant across linear distance conditions; as such, their results
can speak only to the relative strengths of syntactic and linear distance, not to the existence
of a linear distance effect independent of variation in syntactic distance. The absence of any
linear distance effects in humans would indicate that agreement attraction errors—and, it fol-
lows, agreement computations—occur in the context of processes that operate over hierarchi-
cal structures, while the existence of a purely linear effect, over and above the hierarchical
effects, would point to agreement being computed over a representation that encodes linear
ordering.

Figure 7. Human and simulation results for Franck et al. (2002). Vertical bars represent the size of
the attraction effect: the difference between the subject-attractor number match condition (the
lower, square endpoints) and mismatch condition (the higher, circular endpoints). These attraction
effects are shown for the syntactically closer attractor (to the left of each facet) and the linearly
closer attractor (to the right of each facet), marginalizing over the condition of the other attractor.
Error bars for the LSTMs represent standard errors across the five randomly initialized models
trained for each model training objective and training set. Crucially, in humans, the attraction effect
from syntactically closer attractors is greater than that of linearly closer attractors. The reverse is true
for all of the models with the exception of GPT-2.
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To determine if there are such purely linear effects on agreement, Haskell and MacDonald
(2005) compared rates of plural agreement in sentences where the subject was a disjunction
(i.e. included the word or), and where one disjunct was singular and the other plural (see
Examples 12 and 13). Both disjuncts are equally distant from the verb in syntactic terms4

but the second disjunct is linearly closer to the verb. As such, disjunction makes it possible
to test for a linear distance effect independently of syntactic distance. Note that there is no
canonical agreement pattern for disjunct subjects in Mainstream American English (see, for
example, evidence from Foppolo & Staub, 2020), and thus neither the singular or plural form
can be considered an agreement error.

(12) Can you ask Brenda if the boy or the girls …
(13) Can you ask Brenda if the boys or the girl …

Human Results. Haskell and MacDonald (2005) found greater rates of plural agreement when
the plural disjunct was linearly closer to the verb, indicating that linear distance affects agree-
ment (though see Keung & Staub, 2018 for an alternative account of these results).

LSTM Simulations. Simulation results are shown in Figure 8. Both models exhibited a similar
pattern to humans: conditions where the noun closer to the verb was plural had significantly
greater rates of plural agreement than conditions where the noun closer to the verb was sin-
gular (LM-ONLY: β = −0.43, |z| = 11.22, p < 0.001; LM+CCG: β = −0.58, |z| = 12.84, p <
0.001). However, the size of the effect was much smaller than that reported in Haskell and
MacDonald (2005), and thus this set of results, while promising, leaves room for other models
to better match human behavior. A comparison across models indicated that the CCG super-
tagging objective strengthened the linear distance effect compared to LM-ONLY (β = 0.23, |z| =

4 Note that while this is true in many syntactic analyses (Gazdar et al., 1985; Jackendoff, 1977), including the
one adopted by Haskell and MacDonald (2005), asymmetric analyses of coordination are common in minimalist
approaches to syntax (i.e., Cormack & Smith, 2005; Kayne, 1994). That being said, in a standard asymmetric
analysis (Kayne, 1994), the second disjunct forms a constituent with or and is thus more syntactic distant from
the verb than the first disjunct. This means that linear and syntactic distance still make opposing predictions in
Haskell and MacDonald’s (2005) materials.

Figure 8. Human and simulation results for Haskell and MacDonald (2005). Vertical bars repre-
sent the size of the linear distance effect: the difference between plural agreement rates when the
singular subject is closer to the verb position (the square endpoints) and when the plural subject is
closer to the verb position (the circular endpoints). Error bars represent standard errors across the
five randomly initialized models trained for each model architecture and training set. The size of the
linear distance effect is represented by the length of the bar (all models had higher rates of plural
agreement noun closer to the verb was plural than when it was singular). While all of the models
exhibited some linear distance effect, the magnitude of the effect in humans was much larger than
in any of the models.
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4.03, p < 0.001). In this case, then, the syntactic objective did lead to more human-like behav-
ior; surprisingly, this was the case for a linear distance effect rather than for a hierarchical one
as we might have expected. We return to this point in the discussion.

Effect of Training Corpus. Models trained on both smaller training sets also preferred to produce
plural verbs when the plural disjunct appeared closer to the verb (WSJ: β = −0.64, |z| = 14.10,
p < 0.001; Wiki: β = −0.23, |z| = 4.98, p < 0.001). The effect size was larger in models trained
on the WSJ Corpus than in models trained on the much larger Wikipedia corpus (β = 0.46,
|z| = 7.59, p < 0.001). This illustrates that training over larger datasets does not universally lead
to more human-like behavior.

GPT-2. Like all of the other models, GPT-2 preferred producing plural verbs when the plural
disjunct was closer to the verb (β = −0.75; |z| = 8.69; p < 0.001). The magnitude of this effect
in GPT-2 was comparable to that found in some of the more human-like LSTM-based models
(LM+CCG and LM-ONLY models trained on WSJ), but was still far below that observed in
humans. Since there is no canonical grammatical response in this experiment, we cannot
determine whether GPT-2’s sophisticated architecture led to a reduction in error rates in this
simulation.

Notional Number and Distributivity

Background. The previous experiments have characterized syntactic effects on agreement
attraction: How does the linear and hierarchical position of the attractor influence agreement
behavior? We now turn to semantic factors that affect agreement processing. Several studies
have demonstrated an influence of semantic or notional number—the number of countable
parts in the conceptual entity referred to by the noun phrase. Notional number contrasts with
grammatical number, which is typically determined by the morphology of the head noun (e.g.,
the plural morpheme -s in many varieties of English). The role of notional number is particu-
larly salient in collective NPs:

(14) The gang near the motorcycles …
(15) The gang on the motorcycles …

In Example 14, the preposition near tends to give rise to a collective reading, where the
gang is viewed as a single collective entity located near a group of motorcycles. This gives
the NP a singular notional number. By contrast, the preposition on in Example 15 favors a
distributive reading, where each member of the gang is located on their own motorcycle; this
results in plural notional number.

While subject-verb agreement is ostensibly a syntactic constraint, prior work has demon-
strated that it is also affected by the notional number of the subject, with notionally plural
subjects leading to higher rates of plural agreement than notionally singular subjects (Bock
et al., 1999; Eberhard, 1999; Humphreys & Bock, 2005). Analyzing the ability of neural lan-
guage models to simulate these notional number effects is of particular interest given that the
models are trained solely on word prediction or CCG supertagging; since models only under-
stand language through the text they are trained on, they lack the grounding in the physical
world that might be necessary to capture agreement patterns that depend on factors such as
the spatial organization of gang members and motorcycles (Bender & Koller, 2020). Given
such impoverished semantic capabilities, we hypothesize that the models will have greater
difficulty capturing these semantic influences on human agreement behavior.
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Human Results. In a sentence completion study, Humphreys and Bock (2005) found that par-
ticipants produced plural verbs more often when the preposition favored a distributive reading
(as in Example 15) than when it favored a collective reading (as in Example 14).

LSTM Simulation Results. We compare plural agreement rates for humans and both types of
LSTMs in Figure 9. Models showed no significant difference in rates of plural agreement
between distributive-biased and collective-biased prepositions (LM-ONLY: β = 0.047, |z| =
1.32, p = 0.19; LM+CCG: β = −0.030, |z| = 0.65, p = 0.52), and there was no evidence of
an interaction that would indicate a difference between the two types of models (β = 0.074,
|z| = 1.29, p = 0.20). These null results could indicate one of two things: either our models
do not use representations of notional number as part of the computations that result in an
inflected verb form, or they simply have no representation of notional number at all. We will
examine the second possibility in the Summary of Results.

GPT-2. Like in our simulation of linear distance effects with disjunct subjects, there is no
canonical grammatical response we should expect our models to have, so we cannot test
whether the model’s correctness improves. Like the other models, GPT-2 showed no
differences in the rates of plural agreement between the two types of prepositions (β =
−0.017; |z| = 0.21; p = 0.83).

Argument Status

Background. Agreement attraction is also affected by factors at the interface of syntax and
semantics. Building on the hypothesis that core arguments, which are necessary for the inter-
pretation of the verb, are encoded in memory more distinctively than oblique arguments,
Parker and An (2018) hypothesized that the strength of attraction would differ between attrac-
tors in core arguments and attractors in oblique arguments:

(16) CORE ARGUMENT: The waitress who sat the girl(s) unsurprisingly was/were unhappy
about all the noise.

(17) OBLIQUE ARGUMENT: The waitress who sat near the girl(s) unsurprisingly was/were
unhappy about all the noise.

The reasoning that underlies this prediction is as follows. Memory retrieval models argue
that agreement errors are caused by erroneous retrieval of the attractor’s number feature
instead of that of the subject (Badecker & Kuminiak, 2007; Parker & An, 2018; Wagers

Figure 9. Human and simulation results for Humphreys and Bock (2005). Endpoints represent the
rate of plural agreement in the distributive-biased condition (circular endpoints) or the collective-
biased condition (square endpoints). Error bars represent standard errors across the five randomly
initialized models trained for each model architecture and training set. In humans, Humphreys and
Bock (2005) observed higher rates of plural agreement when the reading of the collective subject
was biased toward a distributive reading. We observe no such difference in any of the models’
results.
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et al., 2009). These misretrieval errors are less likely if the features of the attractor are well
encoded, which, by hypothesis, they are in core arguments but less so in oblique ones (Parker
& An, 2018; Van Dyke & McElree, 2011): More strongly encoded features provide a stronger
indication that the attractor is not the subject, steering the memory retrieval process away from
the attractor.

Parker and An (2018) presented participants with sentences such as Example 16 and 17 in a
self-paced reading paradigm. The study followed a 2 × 2 × 2 design: singular vs. plural attrac-
tor, grammatical vs. ungrammatical sentence (i.e., singular vs. plural main verb; the subject
was always singular), and core vs. oblique argument.

Recall that in self-paced reading, agreement attraction can manifest in two ways: first, as a
facilitatory effect in ungrammatical sentences, where an ungrammatical sentence is read faster
in the presence of an attractor NP that mismatches the subject in number (and thus matches
the verb in number). The attractor creates an illusory agreement dependency with the verb,
which shares a number feature with it. Thus, in the case of an attraction error, an ungrammat-
ical sentence is read as if it were a grammatical one, leading to shorter reading times than if no
error had occurred. Second, agreement attraction can manifest as an inhibitory effect in gram-
matical sentences, where grammatical sentences are read more slowly in the presence of an
attractor NP whose number mismatches the subject (and therefore also the verb). An agree-
ment error in these circumstances would result in an ungrammatical agreement relation, as the
attractor and verb do not share the same number, which in turn would result in longer reading
times than if no error had occurred. Overall, the attractor’s presence reduces the processing
cost associated with ungrammaticality—the difference between reading times in grammatical
and ungrammatical conditions. In the Parker and An (2018) paradigm, we expect this reduc-
tion in the cost of ungrammaticality to surface at the matrix verb (was/were), where the gram-
maticality of the agreement dependency can be determined.

Human Results. In Parker and An’s (2018) experiment, participants were more susceptible to
attraction errors in ungrammatical sentences when the attractors were in oblique arguments
than when they were in core arguments. Parker and An (2018) do not report an analysis of
reading patterns on grammatical sentences.

LSTM Simulation Results—Ungrammatical Sentences. A comparison of surprisals at the critical
word to the mean reading times reported by Parker and An (2018) can be found in
Figure 10; for full word-by-word surprisals, and in particular the differences in surprisal at
the attractor, see Appendix D. As in the human experiment, both models showed an attraction
effect for ungrammatical oblique argument sentences (LM-ONLY: β = −1.09, |t| = 26.11, p <
0.001; LM+CCG: β = −0.97, |t| = 19.17, p < 0.001). Unlike humans, however, the models
also showed attraction effects for ungrammatical core argument sentences (LM-ONLY: β =
−1.12, |t| = 27.80, p < 0.001; LM+CCG: β = −1.12, |t| = 22.19, p < 0.001), and there was
no significant interaction between argument status and attraction (LM-ONLY: β = −0.018, |t| =
0.615, p = 0.53; LM+CCG: β = −0.072, |t| = 1.94, p = 0.051). An analysis comparing LM-ONLY

and LM+CCG models did not find a significant three-way interaction between model type,
argument type and number mismatch (β = 0.053, |t| = 1.12, p = 0.26), suggesting that the
syntactic training objective did not affect the models’ ability to simulate the human error
patterns.

LSTM Simulation Results—Grammatical Sentences. As Parker and An (2018) do not present
attraction analyses for the grammatical sentences in their experiment, we present the simula-
tion results here without comparing them to the human patterns. Both models showed a
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significant effect of attraction (LM-ONLY: β = 0.69, |t| = 24.00, p < 0.001; LM+CCG: β = 0.57,
|t| = 15.62, p < 0.001), but no significant interaction between attraction and argument status
(LM-ONLY: β = −0.037, |t| = 1.28, p = 0.20; LM+CCG: β = −0.0024, |t| = 0.064, p = 0.95). A
comparison between LM-ONLY and LM+CCG did not find a three-way interaction between the
additional objective, attractor argument type, and subject-attractor number match (β = −0.034,
|t| = 0.73, p = 0.46). It did, however, yield an interaction between the model type and subject-
attractor number match, reflecting smaller attraction effects in LM+CCG (β = −0.0012, |t| =
2.15, p < 0.05).

GPT-2. For this (and the following) simulation of a comprehension experiment, there is no real
measure of a model’s error rate. As a result, these results cannot show whether GPT-2 has a
lower overall error rate relative to our LSTM models. We thus present results of these simula-
tions only to evaluate the ability of GPT-2 to mimic human error patterns.

In ungrammatical sentences, we found a significant attraction effect (β = −1.10; |t| = 7.01;
p < 0.001), with an interaction with argument status such that the attraction effect was

Figure 10. Word-by-word surprisals from our simulations and corresponding reading times from
Exp. 1 of Parker and An (2018). Error bars are standard errors. Since effects in self-paced reading
typically spill over into the reading times of the next few words, we provide two additional words
for the human results. The relevant effect is found at unhappy in the human data, with the attraction
effect in the oblique argument condition (the difference between dashed lines) being significantly
larger than the attraction effect in the core argument condition (the difference between solid lines).
We see no such difference in models other than GPT-2.
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attenuated when the attractor was in core arguments compared to oblique arguments (β =
1.21; |t| = 7.71; p < 0.001). Grammatical sentences displayed a similar pattern, with a signif-
icant attraction effect (β = 0.94; |t| = 5.70; p < −0.001) that was smaller when the attractor was
in a core argument (β = −0.83; |t| = 5.039; p < 0.001). Unlike the other models, and like
human participants, GPT-2 showed an effect of argument status on the strength of attraction.
This suggests that some aspect of GPT-2’s training or architecture may allow GPT-2 to repre-
sent argument status and encode that feature in a way that influences agreement processing.

Grammaticality Asymmetry

Background. As noted in the previous section, attraction can affect reading in two ways: it can
cause participants to read grammatical sentences more slowly, or it can cause them to read
ungrammatical sentences faster. Theories that attribute agreement attraction to an error in
encoding the number of the subject (Eberhard et al., 2005, among others) predict that both
of these effects should be of the same magnitude (Badecker & Kuminiak, 2007; Wagers
et al., 2009). This is because grammaticality is determined by the number of the verb, which
appears only after the subject is encoded; as such, there is no reason to expect subject encod-
ing errors to occur with different frequency in grammatical and ungrammatical sentences.

Some encoding accounts also hypothesize that encoding errors emerge from an erroneous
percolation of the attractor’s number feature to the subject noun phrase as a whole (Franck
et al., 2002). These accounts thus additionally predict that attraction errors can only occur
when the attractor is within the subject NP, as that is the only case in which there is an upward
path through which the attractor’s number feature can percolate to the subject node.

Wagers et al.’s (2009) self-paced reading study tests both of these predictions using sen-
tences with RC-modified subjects:

(18) The musician(s) [ who the reviewer(s) praise(s) so highly ] will probably win a
Grammy.

Unlike the sentences used in the Bock and Cutting (1992) experiment discussed above, in
these materials it is the matrix clause subject, musician(s), that acts as the attractor NP, and the
agreement relation that is manipulated—the subject-verb dependency between reviewer(s)
and praise(s)—is internal to the relative clause. As a result of this configuration, the attractor
is not within the subject, and thus percolation accounts predict no attraction in this paradigm.

Human Results. Contrary to the predictions of all encoding accounts of agreement attraction,
Wagers et al. (2009) found that human readers show a grammaticality asymmetry: they dis-
played attraction effects in ungrammatical sentences, but not in grammatical ones. Wagers
et al. (2009) additionally confirmed that attractors outside of a relative clause can cause attrac-
tion within that relative clause, providing additional evidence against the percolation-based
encoding account in particular.

LSTM Simulation Results. A comparison between the models’ surprisals at the critical word and
reading times at the critical region of the human data can be seen in Figure 11. For full word-
by-word surprisals, including surprisal differences due to words prior to the critical region, see
Appendix D. Like humans, both types of models showed a significant agreement attraction
effect in ungrammatical sentences (LM-ONLY: β = −0.41, |t| = 12.48, p < 0.001; LM+CCG:
β = −0.30, |t| = 10.17, p < 0.001), but, unlike humans, they also showed attraction in gram-
matical sentences (LM-ONLY: β = 0.09, |t| = 3.32, p < 0.005; LM+CCG: β = 0.089, |t| = 3.02,
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p < 0.005). We found a significant interaction between attraction and grammaticality in both
models (LM-ONLY: β = −0.16, |t| = 6.72, p < 0.001; LM+CCG: β = 0.107, |t| = 4.83, p < 0.001),
such that ungrammatical sentences displayed larger attraction effects than grammatical ones,
in line with the grammaticality asymmetry observed in humans. An analysis comparing the
simulation results across types of models found no evidence of an effect of the CCG super-
tagging objective on the grammaticality asymmetry (β = −0.054, |t| = 1.57, p = 0.11). The
presence of an asymmetry indicates that, like in humans, agreement errors in models are
not simply caused by faulty encoding of the subject’s number, but by a mechanism that is
sensitive to the verb’s number. This could take the form of a retrieval error, as Wagers et al.
(2009) argue is the case for humans, or a bias toward reading sentences as grammatical
(Hammerly et al., 2019). We return to this point in the summary of results.

GPT-2. Unlike the rest of the models we evaluated, GPT-2 failed to display a significant attrac-
tion effect in either ungrammatical sentences (β = 0.39; |t| = 1.46; p = 0.15) or grammatical
sentences (β = −0.23; |t| = 1.18; p = 0.24), and there was no significant interaction between
attraction and grammaticality (β = −0.16; |t| = 0.44; p = 0.66). In this case, then, the weaker

Figure 11. Surprisals for models in our simulation of Exp. 3 of Wagers et al. (2009) at the verb
praise(s), where the grammaticality of the agreement relation within the RC becomes clear, com-
pared to the human data from that experiment (right). Error bars are standard errors. We see a
grammaticality asymmetry in both humans and models, reflected in that fact that attraction in
ungrammatical sentences (the difference between the dashed lines) is stronger than in grammatical
sentences (the difference between the solid lines).
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LSTM models were more human-like than the stronger transformer model GPT-2. We did find
a significant attraction effect in the subset of sentences with a singular subject, and thus a plu-
ral attractor in the mismatch condition (β = 0.65; |t| = 2.33; p < 0.05); this is the condition
where we would expect the largest attraction effects due to a combination of number asym-
metry and grammaticality asymmetry (this analysis replicates one of the simulations reported
by Ryu & Lewis, 2021).

Summary of Results

The simulations we reported in this section aimed to answer three major questions: first, what
phenomena from the human agreement attraction literature are captured by a simple neural
network language model without explicit syntactic supervision or syntactic inductive bias (LM-
ONLY)? Second, does the addition of the explicit syntactic training objective lead models to
better capture those phenomena? And third, how do differences in the corpora used to train
a neural language model affect the agreement attraction phenomena the model captures? In
this section, we discuss how the results of our six simulations bear on these three questions.
We then contextualize our findings more broadly in the General Discussion.

What Phenomena Do LM-ONLY Models Capture? Our first goal was to determine how well a sim-
ple language model that lacks explicit language-specific biases captures the range of factors
that affect agreement processing in humans. To do so, we compared the behavior of human
participants to the behavior of LM-ONLY models trained on the combination of Wikipedia and
the WSJ Corpus. The experiments we simulated can be grouped into three categories:
experiments that bear on the role of hierarchical structure in agreement processing, experi-
ments that bear on the role of semantic factors in agreement processing, and an experiment
that demonstrates a grammaticality asymmetry in agreement attraction. We will discuss the
effect of additional syntactic training in the next section.

The Grammaticality Asymmetry. In our simulation of Experiment 3 from Wagers et al. (2009),
we sought to determine whether models can simulate the grammaticality asymmetry, where
attractors cause ungrammatical sentences to be read faster but do not cause grammatical sen-
tences to be read more slowly. We found that models—both LM-ONLY and LM+CCG—behave
in line with this asymmetry, displaying greater susceptibility to attraction in ungrammatical
than grammatical sentences.

Wagers et al. (2009) interpret the grammaticality asymmetry in humans as indicating that
attraction does not result solely from encoding errors. In English, subjects generally precede
the verbs they agree with. As a result, an error in encoding the subject’s number necessarily
occurs before the verb is processed, and therefore the number of the verb—which determines
the grammaticality of the subject-verb agreement relation—should not affect the rate of agree-
ment errors: we should see as many errors in grammatical sentences as in ungrammatical ones.
The fact that we do see a grammaticality asymmetry, Wagers et al. (2009) argue, supports
models that attribute agreement attraction to erroneous retrieval of the subject’s number at
the verb rather than erroneous encoding of the subject.

Wagers and colleagues’ account of the grammaticality asymmetry could plausibly explain
our LSTM models’ behavior. These models can be divided into two components: an LSTM
encoder, which constructs a representation of the sequence of words observed thus far, and
a decoder, which takes the representation generated by the encoder and outputs a probability
distribution over the next word. The distinction between these two components roughly cor-
responds to the distinction between encoding and retrieval processes: when constructing its
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encoding, the LSTM encoder only has access to the subject, as is the case for encoding pro-
cesses in human participants. By contrast, the decoder’s estimate of a verb’s likelihood as the

next word depends on the identity of the verb: our models’ estimate of P(wiþ1* | w1, …, wi) is

sensitive to the hypothetical next word wiþ1* . Since this probability is directly mapped to our
simulated behavioral measure (as described in the Methods section), we can use Wagers and
colleagues’ reasoning to conclude that some of the erroneous behavior of the models must be
attributed to the decoder rather than the encoder: the asymmetry can only arise if the process
generating the errors can determine the number (and thus the grammaticality) of the verb.

Factors at the Syntax-Semantics Interface. We simulated two human experiments that were con-
cerned with factors at the syntax-semantics interface: distributivity in agreement with collec-
tive subjects (Humphreys & Bock, 2005) and the effect of argument structure on agreement
attraction (Parker & An, 2018). Both LSTM models failed to mirror human behavior: there
was no difference in plural agreement rates between distributive-biased and collective-biased
subjects, and no difference in attraction rates between attractors in core and oblique argu-
ments. We hypothesize that models’ failure to simulate these semantic effects on agreement
is connected to a more fundamental issue in language models: the inability of models trained
solely on language modeling to develop the grounding necessary for true language under-
standing (Bender & Koller, 2020). In particular, to match the hypothesized mechanism under-
lying human behavior for the distributivity experiments (Humphreys & Bock, 2005), a model
would need to distinguish between, for example, an NP that is more likely to be conceptual-
ized as a single, collective entity and an NP that is more likely to be conceptualized as mul-
tiple entities distributed in space. This kind of mapping, from linguistic material to entities in an
external world, may lie beyond the abilities of models trained solely on linguistic material at
this scale (though see Pavlick, 2023 for evidence that these capacities may emerge when
models are trained on orders of magnitude more training data). We speculate that a multi-
modal model with a visual training objective may be better able to capture such effects (for
a example of a multi-modal model in distributional semantics, see Bruni et al., 2014).

Similar limitations may underlie the models’ failure to simulate the results of Parker and An
(2018). The difference between attractors in core and oblique arguments in humans is hypoth-
esized to be due to the differential encoding of arguments based on their importance during
interpretation: since core arguments are more central to interpretation than oblique ones,
attractors in core arguments are better encoded (Van Dyke & McElree, 2011), and thus are
less likely to interfere with agreement than more poorly encoded oblique arguments. Since
word prediction models are never explicitly tasked with interpreting the meaning of the rep-
resentations they construct—only with predicting upcoming words—they are less subject to
the pressures that Parker and An (2018) suggest lead humans to differentially encode core
and oblique arguments. This may partly explain why this distinction does not affect the
models’ agreement error rates. However, this explanation is complicated by our GPT-2 simu-
lations, which did reveal differences in attraction from core and oblique arguments. We leave
an exploration of exactly how this behavior manifests in GPT-2 to future work.

Hierarchical Structure and Linear Distance. The first three experiments we simulated character-
ized the effect of syntactic and linear position on agreement attraction: differences in attraction
strength between attractors in prepositional phrases and relative clauses (Bock & Cutting,
1992), differences in syntactic distance between the attractor and verb (Franck et al., 2002),
and differences in the linear distance separating disjuncts in the subject from the verb (Haskell
& MacDonald, 2005). LM-ONLY models broadly failed to capture these structural effects: they
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showed no difference in attraction strength between PP and RC attractors, whereas humans
made more attraction errors for preambles with PP attractors compared to those with RC attrac-
tors (Bock & Cutting, 1992). Our simulations also showed stronger attraction effects from
attractors linearly closer to the verb than ones that were syntactically closer to the
verb—the reverse of the effect found by Franck et al. (2002). Taken together, these two results
suggest that models operate over linear representations based on the surface form of the input
rather than the hierarchical representations used by humans (Momma & Ferreira, 2019).
Finally, though the models displayed a significant effect of linear distance in the same direction
as the effect found by Haskell and MacDonald (2005), the magnitude of this effect was far
smaller than in humans.

We hypothesize that stronger hierarchical biases may be necessary for models to fully sim-
ulate syntactic and linear distance effects on human agreement processing. The two empirical
findings we failed to capture—the effect of the type of modifier in which the attractor appears
(PP vs. RC), and the effect of the depth of the attractor within the subject—can both be
explained through syntactic distance (Franck et al., 2002), under the assumption that higher
rates of agreement errors correspond to a shorter distance from the attractor to the verb in the
hierarchical structure of the sentence (see Figure 12). This suggests that what may be missing
from our models is an accurate hierarchical representation of input that has a strong causal
role in the models’ word predictions: if the models compute agreement over a flat, linear rep-
resentation, they cannot be sensitive to differences in a measure such as syntactic distance.
Our LM+CCG models, which were trained with explicit syntactic supervision, were motivated
by this hypothesis; we discuss those models in the next section.

Does the Syntactic Bias Imparted by Supertagging Lead to More Human-Like Behavior? Success at
the supertagging task requires sophisticated representations of syntactic structure. For example,
correctly predicting the supertag (S\NP)/ADJ for “is” in “The key to the cabinets is …” requires a
model to both recognize an NP to its immediate left and predict that the upcoming material will
eventually result in an ADJ that combines with the current word and the NP to the left to form an
S. That is, the model must identify “the cabinets” or “the key to the cabinets” is an NP, predict
that the next word is likely to be an ADJ like “rusty,” and reason that “is” must be an (S\NP)/ADJ
to have the full sentence (“The key to the cabinet is rusty”) form an S. We hypothesized that a
language model that shared the representations it uses for word prediction with a supertagger
would be biased toward accessing the syntactic information in those representations, and, as
a result, would exhibit more human-like error patterns when simulating agreement attraction
experiments, particularly those that tested syntactic phenomena (Bock & Cutting, 1992; Franck
et al., 2002). This hypothesis was not borne out: the syntactic training objective had no discern-
ible impact on the ability of the models to capture human error patterns in our simulations of
Bock and Cutting (1992) and Franck et al. (2002). At the same time, this objective did lead to
more human-like results in simulation of experiments that investigated non-syntactic factors:
LM+CCGmodels exhibited a stronger number asymmetry (Bock & Cutting, 1992), stronger linear
distance effects (Haskell & MacDonald, 2005), and weaker attraction in grammatical sentences
(Parker & An, 2018) than LM-ONLY models. We discuss each of these observations in turn.

Are Representations Shared Between Word Prediction and Supertagging? Why did the supertagging
objective fail to affect the networks’ syntactic behavior? Our hypothesis was that in the multi-
task setting the representations generated by the LSTM encoder would better encode fine-
grained syntactic information; those, in turn, would be used not only by the classifier that
performed the supertagging task, but also by the classifier dedicated to word prediction, which
determines the overall behavior of the cognitive model. This hypothesis crucially rests on the
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assumption that the representations used by the two classifiers are shared; if that assumption is
incorrect, and the two sets of representations are distinct, separable subspaces of the LSTM
encoder’s representational space, we would expect little difference in the syntactic behavior
of LM-ONLY and LM+CCG models during word prediction.

To test whether the limited impact of the supertagging objective was due to a lack of shared
representations between the two objectives, we conducted two analyses: a local ablation
analysis and a distributed “amnesic probing” analysis (Elazar et al., 2021). The local ablation
analysis aimed to determine whether the outputs of particular neurons encoded properties that
were crucial to performance in both word prediction and CCG supertagging. To do this, we
measured the performance of one of our LM+CCG models over the test set of CCGBank after
ablating (i.e., setting to 0) in turn each of the 650 neurons in the output layer of our model. This
is equivalent to ignoring the information encoded in one of the dimensions of the models’
vector representation of the input. If the features encoded by one of these neurons is shared
across the two tasks, removing the output of that neuron from the model’s representation

Figure 12. Example (simplified) syntactic trees corresponding to the PP and RC conditions in Bock
and Cutting (1992). Crucially, the attractor NP in embedded more deeply in the subject’s structure
in the RC-modifier condition (12b) than in the PP-modifier condition (12a), resulting in a longer
syntactic distance from the attractor to the inflected verb’s position.
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should impact the performance of our model on both of those tasks. By contrast, removing the
output of a neuron that encodes features that are used in just one of the models’ tasks should
only affect the model’s performance on that task. We plot the results of this analysis in
Figure 13. We find a positive correlation between word prediction and supertagging losses
(r = 0.21; t = 5.44, p < 0.001), indicating that intervening on a neuron tends to affect word
prediction and supertagging losses in the same way. This suggests that representations are
largely shared between the language modeling and supertagging components of our models.

Interpreting this first analysis depends on a localist interpretation of the networks’
representations—it assumes that each individual neuron encodes some potentially syntactic
information that we can remove and observe performance after that information has been
removed. While this approach has been fruitful in isolating meaningful units of syntactic
information in some cases (Lakretz et al., 2019, 2021), representations emerging from neural
networks need not represent information in this highly localized manner (Rumelhart &
McClelland, 1987).

To address the possibility that the relevant representations are distributed, we use amnesic
probing (Elazar et al., 2021), an approach that uses techniques from the de-biasing literature in
Natural Language Processing (Bolukbasi et al., 2016; Ravfogel et al., 2020) to identify and
remove differences across a linear subspace of a models’ representational space, preventing
the model from using particular sources of information.

In practice, our procedure takes the form of a single step of the Iterated Null Space Projec-
tion (INLP; Ravfogel et al., 2020) method using the trained CCG decoder as the classifier
whose accuracy we wish to reduce: we construct a linear transformation T from our trained
linear classifier C such that for any vector representation x, C(T(x)) = 0, and apply T to to all
vector representations output by our model. Since the classifier trained to predict CCG super-
tags can no longer distinguish between vector representations transformed by T, we can con-
clude that all information formerly used to perform CCG supertagging was stripped from our
model’s representations. If information is shared across the word prediction and supertagging
tasks, then we should expect applying T to reduce word prediction performance.

Of course, for this and the previous analysis, it is necessarily the case that some information
will be useful to both tasks: for example, removing a representation of the identity of the pre-
vious word will impair both word prediction and the identification of that previous word’s
supertag. What we are interested in is how much information learned from the CCG supertag-
ging training is used during language modeling. To set an upper bound on the reduction in
performance that could be attributable to information the model learned to represent through
just language modeling training, we trained a supertagging classifier over the representations
from one of our LM-ONLY models. Crucially, only the final classifier was trained on CCG

Figure 13. The language modeling and CCG supertagging losses over the test set of one of our
LM+CCG models with the output of one neuron in the final layer set to 0. Each dot represents
the performance of the model ablating a particular final-layer neuron. Dashed lines represent the
model’s performance with no neurons ablated. Lower losses indicate better performance.
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supertags: the LM-ONLY model generated a representation based only on its word prediction
training, and a classifier (identical in architecture to the supertagging classifier in our LM+CCG
models) was trained to predict supertags from those LM-ONLY representations. In other words,
the weights of the LM-ONLY encoder were frozen before training the classifier, and thus the
classifier could only use the representations learned from the word prediction objective. We
then applied the amnesic probing procedure to this model, removing any information useful to
CCG supertagging that was learned solely from word prediction. The drop in language model-
ing performance we observe after this procedure acts as a baseline of performance loss that is
due to the removal of features that are not learned as part of supertagging training. The results
of this analysis are shown in Table 1.

We observe two things from these results. First, amnesic probing affects LM-ONLY models as
strongly as LM+CCG models, if not more strongly. This could suggest that the information
learned from CCG supertagging training of LM+CCG models is not used during language
modeling. However, we also see that the classifier trained over the representations generated
by our LM-ONLY models achieves similar top-1 accuracy to our LM+CCG models. This
suggests that the syntactic information in the encoder’s representations that is learned in the
LM+CCG setting training is already learned through word prediction alone. This suggests
that the failure of the CCG supertagging objective to lead to more human-like syntactic
behavior may simply be due to the fact that the CCG supertagging task is insufficiently syn-
tactically complex to improve our models’ syntactic representations beyond those learned
from simple word prediction. We will discuss the potential implications of this hypothesis,
as well as how more syntactically sophisticated tasks may overcome this issue, in the General
Discussion.

When Do LM+CCG Models Better Simulate Humans Than LM-ONLY Models Do? While we found
little difference between LM-ONLY and LM+CCG models in the simulations that bear on linear
and syntactic distance, we did find three notable differences between the models’ perfor-
mance, all of which bring LM+CCG models closer to the human error patterns.

First, in our simulation of Bock and Cutting (1992), LM+CCG models exhibited a larger
number asymmetry than LM-ONLY models (like humans, both models showed a larger attrac-
tion effect for plural attractors than for singular attractors). Second, in our simulation of Haskell
and MacDonald (2005), LM-ONLY models, like humans, showed a bias in favor of agreeing
with the number of the linearly closer attractor in a disjunct subject like the boys and the girls.
However, the magnitude of this effect was much smaller than was observed that in human
participants. LM+CCG models showed a larger effect size for this experiment, though it was
still not comparable to that of humans. Finally, in our simulation of Parker and An (2018),

Table 1. Word prediction losses (lower is better) and CCG supertagging accuracy (higher is better),
before and after amnesic probing techniques were used to remove CCG-related information from the
models’ representations.

Model LM Loss CCG Accuracy

LM+CCG 4.921 84.5%

LM+CCG, amnesic 7.180 21.23%

LM-ONLY 4.325 84.30%

LM-ONLY, amnesic 7.182 21.23%
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LM+CCG models showed smaller agreement attraction effects in grammatical sentences than
LM-ONLY models, while the attraction effect in ungrammatical sentences did not change sig-
nificantly between LM-ONLY and LM+CCG models. The pattern shown by LM+CCG models is
in line with the grammaticality asymmetry observed in the human experiments of Wagers et al.
(2009), where agreement attraction was found only in ungrammatical sentences.

To understand these differences in light of our analysis of shared representations, it is help-
ful to consider the various ways in which an additional supertagging objective can influence
our model’s word prediction behavior. We hypothesized that supertagging would give the
model additional incentive to learn syntactic representations that will then be recruited for
word prediction. Our analysis in the previous section suggests that this has not happened,
since the LM+CCG models rely on the same syntactic information learned just by training
on next-word prediction.

However, there are other, indirect ways in which this additional training task can influence
the representations a model learns. For instance, additional pressure for performance on CCG
supertagging may not lead to new information being encoded, but may reduce pressure to learn
other information used only in language modeling. Since the models’ loss is a sum of language
modeling and CCG supertagging losses, The optimization process will prefer robustly encoding
information that helps both training objectives to encoding information that only marginally
improves language modeling performance. This could result in weaker, more heuristic sentence
processing capacities that lead to the more human-like error patterns we observe.

How Does Training Data Affect Agreement Behavior? Next, we discuss our experiments that com-
pared LM-ONLY models trained on the Wall Street Journal section of the Penn Treebank (WSJ)
to those trained on a subset of English Wikipedia. These two training corpora differ in both size
and genre, both of which could affect the agreement behavior our models exhibit; we will
discuss these factors in turn.

The first difference between the corpora is size. Whereas the WSJ corpus is composed of
just under 1 million words, the subset of English Wikipedia is significantly larger, consisting of
approximately 80 million words. In general, models that are given more data learn to perform
better at word prediction (Kaplan et al., 2020), and models that perform better at their task tend
to behave in a more human-like manner (Goodkind & Bicknell, 2018; Merkx & Frank, 2021,
though see Oh & Schuler, 2023a, 2023b). We see this general pattern in models trained on the
Wikipedia dataset, which show more human-like agreement behavior than models trained on
WSJ in our simulation of Bock and Cutting (1992).

In addition to size, we hypothesized that the training dataset can influence the model’s
agreement behavior primarily by exposing the model to various agreement-related syntactic
configurations. In particular, we hypothesized that greater exposure to these configurations will
lead to more human-like behavior for simulations that rely on properties of those configurations
(for example, models will process relative clauses better if they see more relative clauses during
training). To test this empirically, we estimated the frequency of a number of relevant agreement
configurations (subject-verb relations, relative clauses, disjunct subjects, etc.) for each of our
simulations within the WSJ corpus as well as a subset of 500,000 sentences from the Wikipedia
corpus. We parsed each sample of sentences from each corpus using the Chen and Manning
(2014) dependency parser, and checked each resulting parse for each of the relevant syntactic
configurations. The resulting counts are displayed in Table 2. Note that since the counts were
derived from the output of an automatic parser, which may contain errors, they serve only as
approximate estimates of the relevant frequencies.
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One of the largest differences in structural frequency between the two corpora is in the case
of disjunct subjects. We see a higher frequency of disjunct subjects in the Wikipedia corpus
than in the WSJ Corpus, suggesting that the WSJ Corpus models’ human-like performance in
our simulation of Haskell and MacDonald (2005) is not due to more extensive exposure to this
construction. Instead, it could be that greater exposure to disjunct subjects leads to more hier-
archical representations of disjunct subjects, reflecting the fact that the ordering of disjuncts is
unimportant to the interpretation of the sentence. This would, in turn, lead to more consistent
verb number responses regardless of the plural disjunct’s position: Since the ordering of dis-
juncts is more weakly encoded, ordering is less able to influence verb number. This insensi-
tivity to ordering is in contrast with that of humans, who are biased towards the number of the
closer disjunct (Haskell & MacDonald, 2005). The models’ behavior is consistent with tradi-
tional structural accounts of coordination where both disjuncts are assumed to be in a sym-
metric relationship, and as such linear position is irrelevant for operations like agreement (e.g.,
Williams, 1978). By contrast, a more linear representation of disjunction would lead to more
uncertainty as to the number of the verb the model chooses to predict, leading to predictions
that vary more severely when the ordering of disjuncts is swapped.

The one other notable difference across datasets concerns RCs, which are involved in the
other simulation in which the Wikipedia-trained and WSJ-trained models differ in behavior
(the simulation of the PP/RC asymmetry in Bock & Cutting, 1992). This suggests that our
models, syntactic behavior is, in fact, affected by the differences in structural frequency
between corpora of different genres. Given this pattern of construction frequency impacting
syntactic processing behavior, if we aim to replicate the learning conditions of humans, we
must acknowledge that the style of Wikipedia and the Wall Street Journal (i.e., formal and
edited written text) is likely far different in distribution from what is typical of spoken language
or child-directed speech. We will return to this point in the General Discussion.

What Improvements Does GPT-2 Show Relative to LSTM Models? We compared our LSTM-based
models (LM-ONLY and LM+CCG) to GPT-2, a much larger and more powerful language model.
(See Table 3) GPT-2 differs from our models in multiple ways: the number of training samples,

Table 2. Counts of relevant syntactic phenomena in the WSJ Corpus and a subset of Wikipedia.
Number-marked agreement relations are those in which a clear number feature is tagged by the
parser for both the head of the subject and verb, and thus can teach the models about agreement.
This is not the case in, for instance, the English past tense, where verbs are not marked for number
(the dogs barked and the dog barked are both grammatical).

WSJ Wikipedia

Count Per sentence Count Per sentence

Sentences 42068 1 500000 1

Subject-Verb relations 64694 1.54 658173 1.32

Number-marked agreement relations 17421 0.41 134362 0.27

RC subject modifiers 1427 0.034 8963 0.018

PP subject modifiers 7519 0.18 76708 0.15

Nested PP subject modifiers 1027 0.024 10091 0.020

Disjunct subjects 96 0.0023 1746 0.0035
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the number of learned parameters weights, and the models’ architectures. As such, it is difficult
to draw conclusions about the sources of the differences in behavior between the GPT-2 and
each of our models. We can, however, use GPT-2 to address other questions. In the present
work we prioritized an investigation of the qualitative patterns of errors, but a long-term goal of
this research program is arguably to also provide a quantitative match to human error patterns.
If neural networks’ overall agreement error rates are uniformly much higher than those of
humans, this goal is unlikely to be met. Using the stronger GPT-2 model we can ask, first,
whether the LSTM models’ high rate of agreement errors is specific to these models, or whether
it is a property of neural networks more broadly; and second, if GPT-2’s overall error rates are
indeed lower, we can ask if there is there a relationship between overall error rates and the
qualitative match between model and human error patterns.

In the PP vs. RC experiment of Bock and Cutting (1992) and the syntactic distance exper-
iment of Franck et al. (2002), GPT-2 did in fact exhibit overall error rates comparable to
humans. This indicates that the failure of our models to reach comparable overall error rates
is due not to a fundamental issue with neural network models broadly.

This leads us to our second question: do more powerful models like GPT-2 always have
more human-like error patterns? While this is the outcome we would expect if better overall
agreement accuracy was highly correlated with human-like error patterns, the empirical
answer to this question appears to be no. In our simulations of Bock and Cutting (1992),

Table 3. A summary of the experiments we simulated and the effects we found within LM-ONLY

models, LM+CCG models and GPT-2. Each column represents whether we found the indicated
effect in our simulations.

Effect in Humans LM-ONLY LM+CCG GPT-2

Bock and Cutting (1992)

PP > RC O O O

Number Asymmetry P P P

Franck et al. (2002)

Syntactic Distance > Linear Distance O* O* P

Haskell and MacDonald (2005)

Linear Distance P P P

Humphreys and Bock (2005)

Notional Number O O O

Parker and An (2018)

Core vs Oblique Arguments O O P

Attraction in Grammatical Sentences P P P

Wagers et al. (2009)

Attraction from outside of RC P P O

Grammaticality Asymmetry P P O

* An effect is found in the LM-ONLY simulation of Franck et al. (2002), but in direction opposite of
the effect found in humans.
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Haskell and MacDonald (2005), and Humphreys and Bock (2005), GPT-2’s errors did not
match the human error pattern any more than the LSTM-based models did; worse, in our sim-
ulation of Wagers et al. (2009), GPT-2 failed to show the grammaticality asymmetry we found
in all of our LSTM-based models. At the same time, the error patterns in the remaining two
experiments did match the human one more closely. In our simulation of Franck et al.
(2002), GPT-2 showed greater attraction effects from syntactically closer attractors than line-
arly closer ones; and in our simulation of Parker and An (2018), attraction effects were greatly
attenuated when attractors appeared in core arguments compared to oblique ones. We see
these differences as worthy of further investigation, particularly in light of accounts comparing
the mechanisms of transformer-based models such as GPT-2 and the cue-based models of
memory retrieval that are posited as explanations of Parker and An’s (2018) findings (Merkx
& Frank, 2021; Ryu & Lewis, 2021; Timkey & Linzen, 2023).

Overall, we find that models with better overall syntactic competence and language
modeling performance are not necessarily better matches to human behavioral patterns. This
is convergent with prior work indicating that language modeling ability does not predict
scores on syntactic benchmarks (Hu et al., 2020) and that performance on those syntactic
benchmarks does not correlate with models’ ability to predict human behavioral measures
like reading times or eye-movements (Wilcox et al., 2020). The relationship between lan-
guage modeling performance and match to human behavioral patterns, however, is still
unclear: some work finds that better language models are better matches to human behavior
(Merkx & Frank, 2021; Wilcox et al., 2020), but others find the inverse relationship (Oh &
Schuler, 2023b), with recent work suggesting a tipping point where improvements in lan-
guage modeling reduce fit to human behavior (Oh & Schuler, 2023a). Given the size and
training data available to our models, however, we believe that we are operating far before
the tipping point Oh and Schuler (2023b) observed. Given this, our evaluation of human
error behavior seems to run counter to prior results: We would expect to see that GPT-2
(the better language model) is significantly more human-like than LSTMs, but we find no evi-
dence of this. One explanation of this discrepancy may lie in the difference in the kind of
human behavior we and Oh and Schuler (2023b) seek to account for: While Oh and Schuler
(2023b) attempt to explain broad-coverage human reading times, we attempt to explain pat-
terns of agreement errors in particular.

GENERAL DISCUSSION

In this paper we have proposed a framework for employing neural networks as broad-coverage
models of human syntactic processing, and have used this framework to compare the errors
made by humans in a suite of studies from the English subject-verb agreement processing lit-
erature to the errors made by two classes of networks based on the LSTM architecture: first,
LM-ONLY models, which were trained solely on word prediction over a text corpus; and sec-
ond, LM+CCG models, which were trained on word prediction as well as CCG supertagging, a
task that requires sophisticated representations of syntactic relationships between words, and
thus, we reasoned, should share those sophisticated syntactic representations with the word
prediction component.

Both classes of models successfully simulated some human results, but failed to simulate
others. They were especially unsuccessful in replicating human error patterns that can be
attributed to syntactic structure; contrary to our hypothesis, LM+CCG models did not show
more sophisticated, human-like syntactic performance than LM-ONLY models, although they
did perform in a more human-like manner than LM-ONLY models in some of the simulations
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that were not directly linked to syntactic structure. Follow-up analyses indicated that training
on CCG supertagging may not have required models to learn more sophisticated syntactic
representations than learned from next word prediction alone.

We also assessed the sensitivity of our results to the training corpus by repeating a subset of
our simulations using models with the same architecture as before trained only on 80 million
words of English Wikipedia, or only on the approximately one million words of the WSJ
Corpus. Models trained on Wikipedia did not consistently exhibit more or less human-like
syntactic behavior than models trained only on the much smaller WSJ Corpus subset. How-
ever, we do find that the frequency of the relevant syntactic constructions in each corpus can
explain the differences in agreement behavior. We take this to indicate that the behaviors our
models learn are sensitive to training set size and style.

In the sections below, we will discuss these findings and their implications more broadly.
We will then consider the potential for the use of neural network language models as cognitive
models of the processing of syntactic constraints like agreement, as well as the possible pitfalls
and best practices that emerge from our experiments.

Does Adding a Pressure Toward Sophisticated Syntactic Representations Lead to More Human-Like

Syntactic Performance?

As discussed earlier, our experimental results (summarized in Table 4) suggest that the syntac-
tic information used for CCG supertagging only affects agreement attraction patterns modestly,
and, counter to our hypotheses, does not help models simulate human behavior in syntacti-
cally complex environments. In this section, we will discuss both why supertagging did not
impact our models in the way we expected, as well as how we could build models that better
capture the syntactic factors modulating agreement processing.

Why Didn’t Supertagging Lead to Better Simulations of Syntactic Experiments? The error patterns
corresponding to the contrasts that are most closely tied to syntactic structure—PP vs. RC
(Bock & Cutting, 1992) and linear vs. syntactic distance (Franck et al., 2002)—were not more
human-like in LM+CCG than LM-ONLY. We hypothesized that one potential explanation may
be that the representations models’ learned during training on CCG supertagging were not
those recruited for word prediction during evaluation. To test this, we conducted two analyses
to determine whether the parts of our models’ representations that are used for supertagging
are necessary for our models’ word prediction performance.

The results of these two analyses present a mixed picture. Our ablation analysis found that
neurons in LM+CCG models whose removal impacted supertagging performance were also
important for word prediction performance, suggesting that representations between tasks
overlap significantly. Our amnesic probing analysis, which considered the possibility of dis-
tributed representations of syntactic structure, found that removing information useful for
supertagging led to a sharp decrease in LM+CCG models’ word prediction ability, but,
crucially, found a similar amount of information useful to supertagging in LM-ONLY models;
erasure of that information led to similar decrease in word prediction performance as for
LM+CCG models. This suggests that all of the information used for CCG supertagging may
emerge from the model’s language modeling component. This recontextualizes the ablation
analysis: representations important for supertagging and language modeling are shared only
insofar as language modeling representations are sufficient for both tasks.

These results, taken together, point toward the inadequacy of CCG supertagging as an aux-
iliary task for improving the syntactic representations of even simple LSTM language models
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without explicit syntactic inductive biases. Multi-task training on both word prediction and
CCG supertagging fails to create more sophisticated syntactic representations, both in terms
of match to human behavior (on the explicitly syntactic agreement phenomena) and in terms
of the performance of supertagging classifiers that use those representations.

While the auxiliary syntactic objective did not make performance more human-like across
the board, it also did not make performance less human-like. In each case, performance either
did not change significantly or, in three cases, became more human-like. We take this as
evidence that the more human-like behavior of LM+CCG models is not due just to random
variation in the optimization process: if that was the case case we would expect changes in
either direction with equal likelihood. Thus, despite a lack of significant changes in LM+CCG
models’ behavior on the specific, explicitly syntactic tasks we simulated, this pattern of results
is consistent with the claim that additional pressure for models to represent syntactic properties
of their input leads to more human-like behavior broadly.

How Can We Create Models With More Human-Like Syntactic Processing? Auxiliary training
objectives are, at least in principle, an attractive tool, for a number of reasons: they can
be implemented with minimal modification to model architecture; we can verify that the

Table 4. A summary of the experiments we simulated using LM-ONLY and LM+CCG models. The
LM-ONLY column indicates whether LM-ONLY models displayed a significant effect in the same
direction as the original studies’ authors found, and the LM+CCG column indicates whether we
found a significant interaction between the relevant effect and the addition of CCG supertagging
training, as well as the direction of that interaction.

Effect in Humans LM-ONLY LM+CCG
LM+CCG More
Human-like?

Bock and Cutting (1992)

PP > RC O No Difference

Number Asymmetry P Larger Effect P

Franck et al. (2002)

Syntactic Distance > Linear Distance O* No Difference

Haskell and MacDonald (2005)

Linear Distance P Larger Effect P

Humphreys and Bock (2005)

Notional Number O No Difference

Parker and An (2018)

Core vs Oblique Arguments O No Difference

Attraction in Grammatical Sentences P Smaller Effect P

Wagers et al. (2009)

Attraction from outside of RC P No Difference

Grammaticality Asymmetry P No Difference

* An effect is found in the LM-ONLY simulation of Franck et al. (2002), but in direction opposite of
the effect found in humans.

OPEN MIND: Discoveries in Cognitive Science 593

Neural Networks as Cognitive Models Arehalli and Linzen

D
ow

nloaded from
 http://direct.m

it.edu/opm
i/article-pdf/doi/10.1162/opm

i_a_00137/2370071/opm
i_a_00137.pdf by guest on 24 M

ay 2024



model has encoded the relevant information by monitoring its performance on the objec-
tive; and the idea that the representations used in language processing are shaped by the
competing needs of various linguistic tasks is cognitively plausible (see, for example, the
influence of orthographic pressures on the phonological representations used to detect
rhymes, Seidenberg & Tanenhaus, 1979). Our negative results suggest, however, that aux-
iliary training objectives, or at least the CCG supertagging objective we used, may not be a
sufficiently effective tool for aligning the syntactic processing behavior of neural networks
and humans.

How can we create models whose agreement error patterns show a human-like sensitivity
to hierarchical structure? One potential path forward is to increase the sophistication of the
syntactic structures that models are pressured to learn. CCG supertagging primarily requires
sensitivity to local syntactic structure (i.e., as represented in the way a word combines with
adjacent constituents). Models could become more sensitive to larger syntactic context
through pressures to construct incremental representations of parse states: Qian et al.
(2021), for instance, found that models trained to generate parser action sequences were more
successful on syntactic benchmarks than those trained on word prediction and an auxiliary
syntactic task (specifically, predicting a window of parser actions that would occur around
the parsing of the current word).

We can also change the auxiliary task by varying syntactic formalism we use to generate the
representations we pressure models to learn. Other syntactic formalisms such as Minimalist
Grammars (Stabler, 1997) or Tree-Adjoining Grammars ( Joshi et al., 1975) may encode syn-
tactic constraints in a manner that better reflects human processing.

As an alternative approach, we could abandon auxiliary training objectives altogether and,
instead, consider architectures that condition word prediction more directly on syntactic rep-
resentations. The Recurrent Neural Network Grammar (Dyer et al., 2016) architecture, for
example, acts as a language model, but constructs explicit syntactic parses of its input during
processing. This structure encourages the model to learn how best to use the hierarchical infor-
mation contained in those parses to predict upcoming words. Prior work evaluating the syn-
tactic abilities of these models have found them to be substantially better than LSTMs at
predicting measures of processing difficulty in humans (Hale et al., 2018), and, again, objectives
related to modeling parsing explicitly have been shown to lead to better performance on syn-
tactic benchmarks than auxilliary tasks (Qian et al., 2021).

Transformer architectures (Vaswani et al., 2017), like the GPT-2 model we evaluated, have
also displayed significantly stronger syntactic abilities than LSTMs, particularly when trained
on very large datasets (Hu et al., 2020). Transformer-based models have also been argued to
implement processes akin to cue-based memory retrieval (Ryu & Lewis, 2021), a mechanism
which is widely used to explain phenomena in agreement processing, as well as sentence
processing more broadly (Badecker & Kuminiak, 2007; Lewis et al., 2006; Parker & An,
2018; Wagers et al., 2009). While our simulations using the transformer-based GPT-2 did
not produce error patterns substantially closer to humans than LSTMs, we only explored a
single transformer model, and thus a more thorough investigation of transformers—and the
inductive biases inherent to that architecture—may show promise. At the very least, trans-
formers such as GPT-2 obtain lower overall error rates than the LSTMs we trained.

Do the Models Learn Similar Syntactic Behavior From Different Types of Training Data?

In our training data experiments (results summarized in Table 5), we found that models trained
solely on Wikipedia exhibited more human-like agreement error patterns when tested on PP

OPEN MIND: Discoveries in Cognitive Science 594

Neural Networks as Cognitive Models Arehalli and Linzen

D
ow

nloaded from
 http://direct.m

it.edu/opm
i/article-pdf/doi/10.1162/opm

i_a_00137/2370071/opm
i_a_00137.pdf by guest on 24 M

ay 2024



and RC attractors than those trained on the WSJ Corpus. We also found that models trained on
the WSJ Corpus agreed with the closer disjunct much more often than models trained on
Wikipedia; in this respect the WSJ Corpus models were closer to human behavior. This pair
of findings indicates that models’ syntactic processing behavior, as measured by their error
patterns, is sensitive to differences in the size and genre of the models’ training corpus.

For the purposes of using neural network language models as cognitive models, this sen-
sitivity to small perturbations in training data is potentially worrying: if models are not suf-
ficiently robust to variation in training data, the particular composition of the training dataset
becomes a critical part of our cognitive model’s assumptions. The English Wikipedia corpus,
though representative of a particular variant of English, is not representative of the data
observed either by a child acquiring language or by the average native speaker. This is also
true of the WSJ Corpus, which is composed primarily of financial news articles. There are
two major approaches we can take to address this problem: first, we could ensure that
models trained for the purposes of cognitive modeling are trained on datasets that closely
approximate a child’s input (i.e., the CHILDES child-directed speech corpus; MacWhinney,
2000; Yedetore et al., 2023). Alternatively, we could build models with stronger inductive
biases that aim to limit the amount of variation that can be caused by the input data. While
the supertagging objective may have weakly constrained the types of solutions our models
could find during training, stronger architectural inductive biases, like those imposed in
models like Recurrent Neural Network Grammars (Dyer et al., 2016), may increase robust-
ness to variation in training data.

Which Linking Function Should We Use to Model Agreement Processing?

To turn neural network models into psycholinguistic models of agreement processing in pro-
duction, we needed a to convert the model’s output to a format that is comparable to the
results of human sentence completion experiments. Two approaches to this problem that
are distinct from the ONE-SAMPLE linking function we described in the Methods section appear
in prior work. Here we contrast our method with these alternatives and provide a psycholin-
guistic interpretation of one class of potential linking hypotheses.

Table 5. A summary of the experiments we simulated and the effects we found within LM-ONLY

models trained solely on Wikipedia and solely on the Wall Street Journal portion of the WSJ Corpus.

Effect in Humans
LM-ONLY

WIKI + WSJ
LM-ONLY

WIKI

LM-ONLY

WSJ

Bock and Cutting (1992)

PP > RC O O O*

Number Asymmetry P P O

Franck et al. (2002)

Syntactic Distance > Linear Distance O* O* O*

Haskell and MacDonald (2005)

Linear Distance P P P

* An effect is found, but in the opposite direction from humans.
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Linzen and Leonard (2018) sidestep this problem altogether by training their neural network
as a verb number classifier: the decoder directly predicts the number feature of the verb from the
preamble. This technique has two major limitations. First, it requires training data that is anno-
tated with the number and position of the verb. From a cognitive perspective, such annotations
are unlikely to be available to human learners; from a practical perspective, it is very costly to
produce these annotations manually, and unreliable to do so automatically. The second limi-
tation is that this training method prevents the model from learning syntactic constraints other
than agreement, which could be used to better predict agreement patterns. This contrasts with
language models, which are incentivized to build representations for any property that might
help them predict the next word. Those representations are available to the model when it pre-
dicts the verb, and thus the verb’s number. By contrast, the only training signal available to a
number classifier is whether or not it predicts the following verb’s number correctly, and thus
such a model is not incentivized to build representations for any other linguistic properties,
including those that might interact with agreement in agreement attraction contexts.

Another common approach was introduced by Linzen et al. (2016), which we will refer to
as MAX-PROB. Like our method, MAX-PROB attempts to convert the probabilistic next-word predic-
tions of a language model to agreement behavior. Under this paradigm, a candidate pair of the
singular and plural forms of a verb is selected, and the probabilities assigned by the language
model to the two forms are compared. The model is evaluated as if it had produced the form
whose probability is higher, regardless of the magnitude of the difference between the prob-
abilities of the two forms.

The ONE-SAMPLE method we use preserves certain features of MAX-PROB. Like MAX-PROB, ONE-
SAMPLE selects a candidate singular/plural pair of verbs (e.g., “write” and “writes”) prior to
the selection of the verb’s number feature. This design choice can be seen as reflecting two
sequential stages posited by some theories of language production (Bock & Levelt, 1994;
Levelt et al., 1999): first, lemma selection—the selection of the word’s canonical, morpholo-
gically unmarked form; and second, grammatical encoding, where grammatical features, like
number, are marked. Under this interpretation, the model plus linking function combination
presented here aims to capture only the second stage: grammatical encoding.

The main difference between MAX-PROB and ONE-SAMPLE is that ONE-SAMPLE selects the output
form probabilistically, with the probability of a singular form proportional to the probability
assigned to the singular candidate by the language model. This gives ONE-SAMPLE one major
advantage over MAX-PROB: it is sensitive to differences in language model probabilities between
the singular and plural verb forms, thereby capturing subtle effects that would be obscured if
we used the MAX-PROB linking function.

Another consequence of using ONE-SAMPLE is that our models exhibit non-deterministic
behavior for a particular experimental item. Under MAX-PROB, a model that assigned a proba-
bility of 51% to the grammatical form would be taken to consistently produce the correct form
of the verb. By contrast, under ONE-SAMPLE such a model would be only slightly above chance
at producing the grammatical form of the verb. This is true even when the margin between the
correct and incorrect forms’ probabilities is large: a model that assigns 80% probability to the
grammatical form would still produce errors in one out of five simulated trials when given
the same preamble. This stochasticity better reflects the non-deterministic nature of human
agreement errors—we would not expect a participant to always or never make errors on a
particular item, but rather make an error on that item with some probability.

The difference between MAX-PROB and ONE-SAMPLE can be viewed as a reflection of the
competence-performance distinction (Chomsky, 1965). The goal of MAX-PROB-based analyses
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is to determine whether a model has acquired the linguistic competence of subject-verb agree-
ment (i.e., that the verb should agree with the subject in number). By contrast, our goal is to
construct a model that makes the same errors in performance as humans. Thus we use our
ONE-SAMPLE method, which models production of a verb as drawing a sample from the proba-
bility distribution provided by a language model, rather than the MAX-PROB method. These two
linking hypotheses lie at two ends of a spectrum of potential modeling assumptions: under a
paradigm where we take n samples from the distribution over the candidate pair provided by
our language model and select the form sampled most often, ONE-SAMPLE is the case where we
are limited to a single sample, while MAX-PROB matches the behavior in the limit as n
approaches infinity. Future work might explore fitting n to human data, or comparing various
choices of n to human behavior under various degrees of time pressure or memory load. For
instance, one might expect that under high time pressure, human behavior might match an n
closer to 1, while in an untimed proofreading task, behavior might match much higher values
of n.

Modifications to ONE-SAMPLE may also help bring our models’ error rates more in line with
that of humans. Models based on ONE-SAMPLE will often assign significant probability mass to the
form of the verb that the language model judges as less likely, which results in the high agree-
ment error rates we observe in our simulations. This contrasts with MAX-PROB models, which
assign no probability mass to the less likely form and thus, as discussed above, are insensitive
to the underlying language model’s level of certainty. Selecting a linking hypothesis that lies
between these two extremes may lead to the best of both worlds, simultaneously preserving
ONE-SAMPLE’s sensitivity and reducing the overall rate of agreement errors. We leave an inves-
tigation of alternative linking functions for future work.

What Can Neural Networks Contribute to the Study of Human Syntactic Processing?

Most psycholinguistic modeling, including in the area of agreement processing, adopts a cog-
nitive process modeling approach—models are hand constructed, and consist of a number of
interpretable, primitive cognitive operations organized sequentially (Gregg & Simon, 1967);
each of these operations may have a small number of parameters that are fit to behavioral data.
These models have, as their primary benefit, the ability to implement specific psycholinguistic
hypotheses about the phenomena in question.

By contrast, neural networks are, on their face, black boxes (McCloskey, 1991). While we
can attempt to modulate their behavior by changing their architecture and training task (or
tasks), the mechanisms implemented by the model are learned from data during training.
For psycholinguists, this is a double-edged sword: it prevents us from testing a specific algo-
rithmic theory like we could with a cognitive process model, but it also allows the model to
develop solutions that one may not have otherwise considered. This ability to learn potentially
novel solutions from data allows neural network models to be used to evaluate claims in terms
of relevant inductive biases or learning pressures. In this work, we asked whether adding
explicit pressure toward more sophisticated syntactic representations would lead models to
make more human-like agreement errors. By comparing models with and without that addi-
tional pressure, we could address that question, and determine whether strong syntactic rep-
resentations were sufficient to explain the human patterns of agreement errors. Crucially, this
was done without committing to a particular agreement mechanism, and without losing broad
coverage: both types of models could be used to simulate agreement in any construction.

Another benefit of neural network modeling is that the mechanisms employed by neural net-
works are necessarily learnable solutions; if our training task is ecologically valid, and our data is
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comparable to data a human might be exposed to, any solution developed by the model is,
given the inductive biases assumed by our model choice, learnable from the input (Rumelhart
& McClelland, 1987, among others). This is in contrast to traditional cognitive process models,
where it is often unclear how humans come to possess the hypothesized mechanism.

The particular learning objective we use involves predicting the next word over large nat-
ural corpora. Given the wealth of evidence that humans do something akin to word prediction
during sentence processing (for a review, see Kutas et al., 2011), we take word prediction as a
reasonable choice of training task (Elman, 1990). Our training data does, however, present two
issues that complicate the analogy to human learning. First, the type of corpora we
used—encyclopedia or newspaper articles—are not comparable to the input that children
have access to when acquiring language, though they do roughly match the quantity of chil-
dren’s input: in the tens of millions of words. Future work attempting to strengthen the learning
argument could consider using corpora of child-directed speech (i.e., CHILDES, MacWhinney,
2000) to evaluate whether less linguistically complex training data leads to similar behavior
(Yedetore et al., 2023). The second issue is that we must ensure that the amount of the data our
models receive is comparable to that needed by humans to achieve a similar set of behaviors.
In the long term, this perspective suggests considering all processing phenomena from the per-
spective of acquisition: can we construct a model that captures the relevant phenomena at the
same stage of “acquisition" as human children?

Learnability considerations aside, a critic may still argue that the syntactic processing mech-
anisms that models like ours learn are still insufficiently explanatory. Because the model’s pre-
dictions are generated by a series of ostensibly uninterpretable matrix operations, referring to a
neural network model as a model of language processing is merely replacing one black
box—a human participant—with another—a neural network. That is, while neural network
models can act as instantiations of broad cognitive principles (i.e., prediction; Goldstein
et al., 2022), a critic may argue that those principles are too coarse to act as a proper mech-
anistic theory. We believe that this problem is not insurmountable. Unlike human participants,
the inner workings of a neural network model can be recorded, probed, ablated, and inspected
in a variety of other ways with little difficulty and without ethical concerns, allowing
researchers to approximate high-level, more easily interpretable operations that are imple-
mented by a particular neural network (see, for example, Elazar et al., 2021; Finlayson
et al., 2021; Hupkes et al., 2018; Lakretz et al., 2019; Ravfogel et al., 2021). While mecha-
nistic explanations of processing do not come for free from neural network models, as they do
in more traditional psycholinguistic models, the fact that its possible to analyze their internal
computations lends them some transparency.

We began by asking what behavior a simple linear sequence learner with no explicit syn-
tactic pressure toward hierarchical syntactic representations exhibits after being trained on
word prediction. We then compared this model’s agreement error patterns to a model with
an explicit syntactic training objective. Continuing to pursue this approach by analyzing
models with stronger and stronger pressures toward sophisticated syntactic representations
allows for a bottom-up approach to understanding phenomena like agreement attraction par-
allel to traditional hypothesis building. First, through this exploration in the hypothesis space,
we find the right biases and pressures sufficient for neural models to capture human perfor-
mance, and then construct specific mechanistic hypotheses about the cognitive processes that
give rise to particular behavioral phenomena using neural network analysis techniques. These
mechanistic hypotheses then serve to connect the particular innate or external biases and con-
straints that characterized our neural network model with traditional psycholinguistic models
of the representations and processes that govern language processing.
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How Do Our Results Bear on Existing Accounts of Agreement Attraction?

As discussed in the previous section, we see our neural network modeling approach as com-
plementary to existing symbolic models of agreement attraction errors, and in this work we
have sought to model a set of experiments from the literature that motivate a number of exist-
ing symbolic approaches to explaining agreement errors. In this section, we will focus on how
the results of our experiments relate to two accounts of agreement errors, feature percolation
and retrieval interference.

Feature Percolation accounts of agreement attraction (Franck et al., 2002, etc.) propose that
agreement errors are fundamentally encoding errors: they emerge when the speaker or reader
erroneously encodes the wrong number feature on the subject. More specifically, they propose
that in sentences that exhibit agreement attraction from subject modifiers, the number feature
from a noun in the modifier “percolates” upward through the sentence’s hierarchical structure
to the level of the subject. This contrast with the correct processing of agreement, where it is
the number feature of the head of the subject that is expected to percolate to this level.
Crucially, these proposals suggest that attraction errors are sensitive to a sentence’s syntactic
structure: the rate of attraction errors is expected to be inversely proportional to how far a fea-
ture needs to erroneously percolate to cause an attraction error. The experiments from Bock
and Cutting (1992) and Franck et al. (2002) we simulated provide evidence for this account:
they demonstrate that the syntactic distance between the subject and attractor affects agree-
ment attraction error rates in humans. We find that both our LM-ONLY and LM+CCG models
can encode relatively sophisticated syntactic structure, as evidenced by the CCG supertagging
accuracy of classifiers trained on their representations, but still fail to replicate the syntactic
distance effects found in humans. These results corroborate the importance of tying agreement
mechanisms to structural representations: Syntactic distance effects are not simply emergent
from the presence of syntactic structure and pressure to learn agreement.

By contrast with the Bock and Cutting (1992) and Franck et al. (2002) experiments, which
support the feature percolation accounts, the grammaticality asymmetry result from Wagers
et al. (2009) points to the inadequacy of these accounts (though see Hammerly et al.,
2019). Wagers et al. (2009) instead argue for a retrieval interferencemodel of agreement errors,
where agreement errors emerge not from an error in encoding, but rather an error in retrieving
the number feature of the subject when the agreement computation is conducted at the verb.
Typically, these accounts rely on cue-based retrieval models of memory to predict the fre-
quency of retrieval errors that lead to agreement attraction errors (Badecker & Kuminiak,
2007; Wagers et al., 2009, etc.). Our results demonstrate that the results Wagers et al.
(2009) found are derivable from LSTMs, suggesting that the encoding-decoding scheme
learned by these models represents an alternative or equivalent approach to cue-based
retrieval for explaining grammaticality asymmetry effects. Exploration of the encoding
schemes used by these models may shed light on alternative accounts of these effects: Lakretz
et al. (2019, 2021) find that LSTM models similar to ours encode number features in a dense,
localized manner. These models often encoded number for multiple noun phrases in embed-
ded structures (like those used in Wagers et al., 2009) in a single dimension of the model’s
representations, leading to lossy encodings of number whose decoding/retrieval may look
fairly different from that in cue-based models.

Rather than seeking a neural network alternative to cue-based accounts, Ryu and Lewis
(2021) find that the attention mechanisms in models like GPT-2 may implement some princi-
ple of cue-based retrieval. Work into comparing the encoding and retrieval mechanisms
employed by different neural architectures (i.e., Timkey & Linzen, 2023) may serve as fertile
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ground for exploring the hypothesis space consistent with results like Wagers et al.’s (2009)
grammaticality asymmetry.

Of course, encoding and retrieval based accounts of agreement attraction are not mutually
exclusive. For example, Yadav et al. (2023) find that hybrid models, where errors can be due
to either encoding or retrieval, predict human agreement errors better than non-hybrid
models. In this sense, our approach can also be seen as a hybrid model, as errors can arise
in either stage.

CONCLUSION

In this paper, we have proposed a framework for using neural language models to model
human syntactic processing, and used that framework to evaluate the ability of a variety of
neural language models with different training data and training objectives to simulate results
from the agreement attraction literature. We aim to answer three questions: what behaviors
arise in LM-ONLY models, which are trained just to predict the next word? Do LM+CCG
models, which are provided with explicit syntactic supervision, perform in a more human-like
way? Does the size and genre of the models’ training corpus influence syntactic behavior?

Our simulations leave us with a few key findings: (1) neural network language models can
capture a number of syntactic agreement effects, including linear distance effects, the gram-
maticality asymmetry and the number asymmetry; (2) much of the syntactic information a
model must learn for an auxiliary syntactic task may already be learned from word prediction;
and (3) the ability of a language model to capture agreement phenomena is dependent not
only on the inductive biases imbued by the models’ architecture and pressure from training
objectives, but also the size and composition of its training data.

More broadly, we see this work as the first step in constructing a neural network-based
approach to modeling and understanding online agreement processing, and human syntactic
processing more broadly. Under this approach, we first characterize the biases and pressures
necessary for matching human performance, then analyze the behavior and internal represen-
tations of such human-like models to generate detailed and testable hypotheses to be tested in
humans. Crucially, this “bottom-up" approach is complementary to the cognitive process
modeling approaches that are currently standard in psycholinguistics. The issues inherent in
cognitive process modeling—determining the learnability of a particular account, as well as
determining the breadth of the empirical phenomena that account covers—can be addressed
by using neural network approaches to generate and test statistically learned hypotheses. The
work presented here works toward completing the first stage, helping characterize the biases
and pressures on learned representations necessary to match human syntactic processing and
evaluating a method for imbuing models with one such bias.
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APPENDIX A: THE EFFECT OF VERB CHOICE

In the simulations of production experiments in the main text, we derive the agreement error
rate from the difference in probabilities our models assign to singular and plural forms of the
word be. If our models are learning an abstract agreement mechanism (as opposed to a lex-
ically specific mechanism), we should expect our results to generalize to other verbs. In this
section, we evaluate that expectation in the case of our simulation of Bock and Cutting (1992).

To do this, we first collected a set of 557 pairs of singular and plural verb forms that appear
in the Wall Street Journal portion of the Penn Treebank (Marcus et al., 1993), extracted based
on their part-of-speech annotations. We then ran our simulation of Bock and Cutting (1992)
using the probabilities of each of these singular and plural verb forms for each of our LM-ONLY

5 Analysis used the model formula error_rate ~ subj_num * attr_subj_match * pp_or_rc * log(freq) + (1 |model ) +
(1 | item).
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and LM+CCG models trained over the full WSJ+Wikipedia training set. Results of this analysis
averaged over all of these verbs are shown in Figure A1.

Part of our motivation for using forms of the verb be in our main analysis was a concern that
singular and plural verb forms with lower frequency may not have their number features well
represented in our models. Given this concern, we extracted the frequencies of the singular
forms of our verbs from the Corpus of Contemporary American English (COCA; Davies, 2019).
The attraction effect for each verb by verb frequency is shown in Figure A2.

A beta mixed-effects regression5 revealed a significant attraction effect (LM+CCG: β =
−0.17, z = −7.89, p < 0.001; LM-ONLY: β = −0.36, z = −18.21, p < 0.001), but no significant
interaction between the attraction effect and whether the modifier was a PP or RC (LM+CCG:
β = −0.092, z = 1.19, p = 0.23; LM-ONLY: β = 0.049, z = 1.70, p = 0.09), matching the con-
clusions of the analysis in the main text: models do not capture the PP/RC asymmetry Bock
and Cutting (1992) found in humans. We did find a significant interaction between the
attraction effect and the log frequency of the candidate singular/plural verb pair we used to
evaluate agreement, where evaluating with more frequent verbs led to greater attraction effects

Figure A2. Agreement Attraction effects (Subject-Attractor Mismatch minus Match Error Rates)
from our simulations of Bock and Cutting (1992) for each of the 557 singular and plural verb pairs
extracted from the WSJ Corpus.

Figure A1. Error rates from our simulations of Bock and Cutting (1992) averaging over 557 singular
and plural verb pairs extracted from the WSJ Corpus.
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(LM+CCG: β = −0.092, z = −28.88; p < 0.001; LM-ONLY: β = −0.068, z = −23.34, p < 0.001).
We also found a significant negative effect of log frequency on error rates (LM+CCG: β =
−0.08; z = −38.01; p < 0.001; LM-ONLY: β = −0.05, z = −25.50, p < 0.001). These results
are consistent with the hypothesis that lower frequency verbs have a less specified number
in our models’ representations, and thus are less sensitive to agreement constraints and attrac-
tion phenomena. However, these results are also consistent with a hypothesis where the agree-
ment mechanism in our models is sensitive to the agreeing verb’s frequency. We leave further
investigation of these properties, as well as their implications for the modeling of human data,
to future work. (See, for intstance, Wei et al., 2021.)

Table B1. Top-5 predictions and their log-probabilities from one of our LM+CCG models

Preamble Prediction Log-Probability

The key to the cabinets … of −1.34

, −2.49

is −2.83

are −3.40

was −3.53

The key to the cabinet … of −1.54

is −2.38

’s −2.68

, −3.03

was −3.17

Table B2. Top-5 predictions and their log-probabilities from one of our LM+CCG models

Preamble Prediction Log-Probability

The key to the cabinets … was −1.46

of −1.87

is −2.06

, −3.04

and −3.23

The key to the cabinet … is −0.99

was −1.68

, −3.11

of −3.14

’s −3.27
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APPENDIX B: SAMPLE MODEL PREDICTIONS

In this appendix, we provide the top 5 generations, along with their probabilities, from one
of each of our two primary model classes: LM-ONLY and LM+CCG. Since model perplexities
are difficult to compare given differences in vocabulary and test set, we provide these top-
ranked continuations to allow for a qualitative evaluation of the word-prediction abilities of
our models.

APPENDIX C: EDITS TO EXPERIMENTAL ITEMS

The neural network models we train operate on the word level, and depend on the set of
words contained in the models’ training sets in order to learn word-level representations.
When a model encounters a word it has not seen in training, it uses the representation of a
special <UNK> token that replaces words that appear fewer than five times in the corpus.

Because most experimental manipulations depend on the features of a particular word, the
experimental materials we use in our simulations must be edited so as to avoid <UNK>
tokens preventing the models’ from being able to interpret those features. Below, we will list,
for each set of experimental materials, the changes made to those materials to match the
vocabulary of the Wikipedia dataset. Due the the significant vocabulary limitations of the
WSJ Corpus dataset, we provide a full list of the modified items. Since our goal is to replace
rare words, which were excluded from the models’ vocabulary, with words that the models
have observed, the frequency of the new words is necessarily higher than of the words they
replace. We do not control for orthographic properties such as word length, since our LSTM
models treat words as atomic units and thus have no access to those properties.

Modifications to Match the Wikipedia Vocabulary

Bock and Cutting (1992). We identified four subjects or attractors which did not have both their
singular and plural form in our vocabulary. Below, we provide one condition (singular subject,
singular attractor, PP modifier) of the edited items containing each of those noun phrases, with
the noun appearing in the original items shown in parentheses.

(19) The performer (fire-eater) in the carnival show
(20) The inspector (superintendent) of the technical school
(21) The letter (memo) from the junior executive
(22) The lab (laboratory) with the analog computer

In addition, there were 3 words that were not in the Wikipedia training set that were not a
part of the critical manipulation, and thus remained as <UNK> tokens during simulations. We
provide example sentences containing those words below:

(23) The performer who <UNK> (enlivened) the show
(24) The neural zone around the <UNK> (arcturian) solar system
(25) The traffic jam on the <UNK> (Okemos) street

Franck et al. (2002). All of the words used in the experimental materials were within the Wiki-
pedia vocabulary with one exception, innkeeper. We provide a sample sentence of the item
with innkeeper, and its replacement, inn:

(26) The meal for the guest of the inn (inn-keeper)
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Haskell and MacDonald (2005). A sample sentence for each item with changes is listed below:

(27) Ask Ronnie if the pearl (ruby) or the diamonds
(28) Do you remember if the table (dresser) or the beds
(29) Did Naomi say whether the shelf (bookshelf ) or the beds
(30) Marcus will tell you whether the pitcher or the pots (teapots)
(31) Do you remember if the cocktail (martini) or the beers
(32) Find out whether the shovel or the buckets (rakes)

No <UNK> tokens remained after these changes.

Humphreys and Bock (2005). No words in the Humphreys and Bock (2005) experimental mate-
rials were not in the Wikipedia vocabulary, and thus no modifications were made to the items.

Parker and An (2018). One word critical to the manipulation, stewardess, was replaced as follows:

(33) The woman (stewardess) who sat the passengers certainly was very pleased with the
long flight.

The adverb unsurprisingly, though not critical to the manipulation, was also not in the
vocabulary. An example sentence with it replaced with an <UNK> token is provided below:

(34) The waitress who sat near the girl <UNK> (unsurprisingly) was unhappy about all the
noise.

Wagers et al. (2009). Two words, one critical to the manipulation and one not, were not in the
Wikipedia vocabulary. An example item with both words is shown below:

(35) The vendor who the host (hostess) suggests to their friends are excellent but <UNK>
(outrageously) expensive.

WSJ Corpus Items

Bock and Cutting (1992).

1. The new tape from the popular rock artist
2. The newspaper from the British government agency
3. The performer in the carnival show
4. The bright light in Doctor Smith’s examination room
5. The security force at the giant manufacturing plant
6. The interview of the famous television host
7. The popular leader of the left dissident group
8. The teacher for the chemistry student
9. The inspector of the technical school

10. The letter from the junior executive
11. The neutral area around the <UNK> solar system
12. The traffic block on the <UNK> street
13. The office of the certified employee
14. The rebel in the dangerous conflict
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15. The actor in the blockbuster film
16. The consultant for the growing firm
17. The teaching aide for the science lab
18. The employee with the diplomat’s message
19. The star of the <UNK> production
20. The corporation with the banking monopoly
21. The picture of the prominent politician
22. The writer of the modern book
23. The teacher with the special education certificate
24. The member at the union meeting
25. The director of the new motion picture
26. The candidate for the corporate promotion
27. The editor of the history book
28. The lab with the old computer
29. The activist at the political rally
30. The student in the Spanish class
31. The Peace Corps member in the African town
32. The leader of the Roman city state

Franck et al. (2002).

1. The ad from the office of the real estate agent
2. The announcement by the director of the foundation
3. The article by the writer for the magazine
4. The author of the speech about the city
5. The computer with the program for the experiment
6. The contract for the actor in the film
7. The dog on the path around the lake
8. The friend of the editor of the magazine
9. The gift for the daughter of the tourist

10. The helicopter for the flight over the hill
11. The lesson about the government of the country
12. The letter from the friend of my brother
13. The book by the developer of the machine
14. The chair on the deck of the ship
15. The gift for the guest of the hotel
16. The museum with the picture of the artist
17. The design for the engine of the plane
18. The payment for the service to the school
19. The photo of the girl with the baby
20. The post in the support for the platform
21. The prescription by the doctor from the clinic
22. The producer of the movie about the artist
23. The publisher of the book about the king
24. The setting for the movie about the scientist
25. The sign in the garden near the mansion
26. The switch for the light in the room
27. The message to the friend of the politician
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28. The threat to the president of the company
29. The tour of the garden near the park
30. The train to the city on the lake
31. The truck on the bridge over the stream
32. The discussion about the topic of the paper

Haskell and MacDonald (2005).

1. Can you ask <UNK> if the kids or the adult
2. Do you know if the mice or the monitor
3. Do you think the soybeans or the apple
4. Have you heard whether the teachers or the principal
5. How do I know if the shelves or the floor
6. I <UNK> tell whether the doctors or the professional
7. Do the <UNK> say if the stores or the restaurant
8. We need to know if the potatoes or the grain
9. I want to know if the sheets or the color

10. I need to know if the tables or the chair
11. Maria probably knows if the photos or the painting
12. It didn’t matter to me if the magazines or the book
13. It is hard to tell whether the steelmakers or the engineer
14. Ask <UNK> if the metals or the diamond
15. I wonder if the plants or the fly
16. It doesn’t really matter whether the contractors or the bank
17. Can you tell me whether the swings or the court
18. Do you think the windows or the wall
19. Do you remember if the doors or the carpet
20. Did <UNK> say whether the book shelves or the desk
21. Can you ask the guide if the pencils or the gun
22. Did <UNK> say whether the lights or the plant
23. Can you tell me if the TVs or the phone call
24. Can you tell me whether the boxes or the can
25. The book must say whether the trails or the river bank
26. Would you say the fax machines or the printer
27. Ask the doctor whether the passengers or the driver
28. Marcus will tell you whether the pipelines or the road
29. Do you remember if the waters or the beer
30. Ask the boss if the cases or the box
31. <UNK> confused about whether the pictures or the prize
32. Do you think the lights or the sign
33. Find out whether the prices or the tax
34. Did you think the teams or the expert
35. Can you find out if the barrels or the package
36. Do you know whether the phones or the camera
37. The board wants to know if the theaters or the coffee shop
38. <UNK> must know whether the book stores or the restaurant
39. Can you tell me whether the brokers or the salesman
40. Tell me whether the boards or the president
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APPENDIX D: FULL SENTENCE SURPRISALS FOR COMPREHENSION SIMULATIONS

Parker and An (2018)

Figure D1. Word-by-word surprisals for models in our simulation of grammatical materials from
Parker and An (2018). Error bars are standard errors. Since models were given no context prior to
the first word, no surprisal is given for the first word of the sentence (The). Since near only appears in
the oblique argument condition, no surprisal is provided for the token in the core argument condi-
tion. The critical region here is at the verb was/were, where the grammaticality of the agreement
relation becomes clear. If an attraction effect manifests in grammatical sentences, surprisal will be
higher in the mismatch condition than for those in the mismatch condition.
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Figure D2. Word-by-word surprisals for models in our simulation of ungrammatical sentences
from Parker and An (2018). Error bars are standard errors. Since models were given no context prior
to the first word, no surprisal is given for the first word of the sentence (The). Since near only appears
in the oblique argument condition, no surprisal is provided for the token in the core argument con-
dition. The critical region here is at the verb was/were, where the grammaticality of the agreement
relation becomes clear. If such an effect manifests in ungrammatical sentences, surprisal will be
lower in the mismatch condition than in the match condition.
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Wagers et al. (2009)

Figure D3. Word-by-word surprisals for models in our simulation of sentences with a singular sub-
ject from Wagers et al. (2009). Error bars are standard errors. Since models were given no context
prior to the first word, no surprisal is given for the first word of the sentence (The). The critical region
here is at the verb praise(s), where the grammaticality of the agreement relation becomes clear. If an
attraction effect manifests in grammatical sentences, surprisal will be higher in the mismatch con-
dition than for those in the mismatch condition. If such an effect manifests in ungrammatical sen-
tences, surprisal will be lower in the mismatch condition than in the match condition.
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Figure D4. Word-by-word surprisals for models in our simulation of sentences with a plural sub-
ject from Wagers et al. (2009). Error bars are standard errors. Since models were given no context
prior to the first word, no surprisal is given for the first word of the sentence (The). The critical region
here is at the verb praise(s), where the grammaticality of the agreement relation becomes clear. If an
attraction effect manifests in grammatical sentences, surprisal will be higher in the mismatch con-
dition than for those in the mismatch condition. If such an effect manifests in ungrammatical sen-
tences, surprisal will be lower in the mismatch condition than in the match condition.
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