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 A B S T R A C T

When trained to place high probability on a training corpus, neural network language models can learn 
a surprising amount about language. Recent work has demonstrated that large performance improvements 
can arise from simply increasing, i.e., scaling, the size of the corpora they are trained on and the number 
of parameters in those models. Accordingly, many contemporary systems are trained on trillions of words. 
While largely beneficial to performance on language applications, scaling has several downsides for both 
computational psycholinguistics and natural language processing research. We discuss the scientific challenges 
presented by the scaling paradigm, as well as the benefits that would result from language models that can 
learn from human-scale data. In the second half of this paper, we report on findings from a recent effort to 
bring about human-scale language model pretraining: the first iteration of the BabyLM Challenge, a shared 
task organized by the authors that invited participants to train a language model on 100 million words or less. 
The challenge produced several concrete best practices for practitioners interested in small-scale language 
modeling. For cognitive scientists, the challenge demonstrated that robust linguistic generalizations can be 
learned by models trained on a human-scale dataset, though this is not yet achieved through cognitively 
plausible mechanisms. Furthermore, it established a population of ‘‘BabyLMs’’ that are all effective at data-
efficient language learning. Studying such models can help us identify hypotheses for the computational 
mechanisms that underlie human language acquisition.
Introduction

Connectionist modeling, i.e., modeling based on neural networks, 
has been a core theoretical and empirical tool for psycholinguistics re-
search over the past four decades (Christiansen & Chater, 1999; Elman, 
1990; Smolensky, 1988). This approach, which provides a paradigm for 
explaining how processing emerges from learning and how symbolic 
structure can be implemented by distributed representations, has seen 
a recent resurgence due to the emergence of highly effective language 
models (LMs) based on neural networks. Language models are trained 
to fit the empirical distribution of words in a training corpus, and, 
through this process, learn a considerable amount about grammar and 
other aspects of language (Linzen & Baroni, 2021). Much of the practi-
cal success of LMs in applications has been driven by scaling language 
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models (Hoffmann et al., 2022; Kaplan et al., 2020), i.e., increasing 
the number of model parameters, training them on larger and larger 
amounts of data, or often both. This article takes a critical look, from a 
psycholinguistics perspective, at scaling both the number of parameters 
and the size of the training corpus as a path to improve language 
models. In short, we argue that bigger is not always better, and that 
future success in connectionist modeling of psycholinguistic processes 
will require, alongside the current scaling paradigm, models that can 
be trained on corpora of a humanlike scale.

First, we discuss the impact of scaling on the relationship between 
connectionist modeling and linguistics, a relationship that has been 
characterized as ‘‘frictional’’ (Pater, 2019). We outline two key ways 
connectionist modeling can contribute to linguistics research, and argue 
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that the utility of language models for psycholinguistics research is 
limited by the current trend toward larger and more data-intensive 
models. We propose that a simple way to mitigate these issues is to 
devote effort toward building more data-efficient connectionist models 
trained on more developmentally plausible datasets in terms of size, 
genre, and modality.

Second, we discuss the impact of scaling on machine learning (ML) 
and natural language processing (NLP) research. Although generally 
beneficial for NLP applications, we argue that the scaling trend is 
not without its downsides. We highlight three specific issues with 
this paradigm. First, while the focus on evaluating language models 
based solely on performance incentivizes scaling and disincentivizes 
research into data-efficient models (Linzen, 2020), despite the fact that 
data-efficient models are essential when training data is scarce, for 
example, in low-resource languages or specialized domains. Second, 
smaller datasets are easier to curate and control for quality. Third, due 
to the cost of training models at scale, the focus on scale produces 
a high barrier to entry and an environment in which research teams 
might be relatively risk-averse. Both of these factors can potentially 
lead to scientific stagnation. Again, we propose that downsides can be 
mitigated by devoting efforts toward building and training models at 
smaller data scales. Such models can be prototyped and tested quickly 
and cheaply, allowing for broader participation and faster innovation 
in machine learning research.

In the remainder of the paper, we discuss a recent effort we led 
that was motivated by these concerns: the BabyLM Challenge (Warstadt 
et al., 2023), a shared task that invites participants to train language 
models on the amount of data available to a typical human language 
learner. The BabyLM Challenge was held at a large natural language 
processing conference in the fall of 2023 and received a large number 
of participants, as well as national press coverage (Whang, 2023). 
We identify several key technical findings from the challenge and 
discuss their implications for psycholinguistics. For NLP practitioners, 
we recommend one model architecture — called LTG-BERT — as a 
good starting point for small-scale language modeling; in Appendix A, 
we present several follow-up studies that investigate various features 
of this architecture, which was the winner of the challenge. We discuss 
two main takeaways from the BabyLM Challenge for cognitive scientists 
and psycholinguists. First, the challenge demonstrated that robust syn-
tactic and semantic generalizations can be learned by neural language 
models trained on human-scale corpora, even though these training 
methods are often not cognitively plausible. Indeed, some of our best-
performing models were just a few percentage points shy of human 
performance on grammatical acceptability tasks. Second, the challenge 
established a population of models that are all effective data-efficient 
language learners. Studying these ‘‘BabyLMs’’ can help us identify 
hypotheses for the computational mechanisms that underlie human 
language learning. We note, however, that all models were trained on 
English text and the extent to which these findings generalize across 
typologically diverse languages therefore remains an open question that 
should be ddressed in future research.

Scaling neural language models

Up until the mid-2010s, the dominant paradigm in natural language 
processing (NLP) was to build systems that combined a series of highly 
articulated, domain-specific components. For example, in a machine 
translation system of that epoch, one component would be responsible 
for aligning words between the source and target sentence, another 
component responsible for homonym disambiguation, and another for 
scoring the naturalness of the proposed text (Block, 1962; Brown, 
Della Pietra, Della Pietra, & Mercer, 1993). However, over the course 
of the last decade, this paradigm has changed. Nowadays, the best-
performing NLP tools typically consist solely of a neural network LM 
optimized to predict the probability of a unit of text (or token) given 
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its context.2 After this initial training stage, referred to as pretraining, 
the LM can be adapted to particular applications, through training on 
a secondary objective, e.g., to predict the sentiment of a sentence. This 
second stage of training is called fine-tuning. In contrast to the classic 
NLP architecture that consists of a series of modular components, the 
neural paradigm involves just one single system, the LM, which can be 
adapted to a variety of tasks (Devlin et al., 2019). More recently, many 
contemporary LMs are adapted to new tasks by simply conditioning 
the model’s output on several examples of the task, a technique known 
as in-context learning (Brown et al., 2020). Whereas previously, an 
engineer seeking to improve an NLP system could, in principle, improve 
one of its modular components in isolation and then reinsert it into the 
system, neural network language models often cannot be modularized 
in this fashion. Indeed, a priori, it is not clear what constitutes a module 
in a neural LM. Thus, improving the performance of such a holistic 
system often requires retraining the neural LM in its entirety.

In engineering better and better neural language models, the field of 
NLP has benefited from a larger trend in computer science: the grow-
ing amount of data and computing power afforded by modern com-
puters (Coffman & Odlyzko, 2002; Schaller, 1997). Neural network–
based systems that were capable of learning from larger amounts 
of data tended to outperform their competitors, even without archi-
tectural changes compared to those competitors. For example, one 
popular LM model, GPT-2 (Radford, Wu, Child, Luan, Amodei et al., 
2019) performed substantially better on NLP tasks than its predecessor, 
GPT (Radford, Narasimhan, Salimans, Sutskever et al., 2018), even 
though the two have very similar architectures: the main difference 
between them is that GPT-2 has more parameters and was trained on 
more data. More broadly, one reason why models using the Trans-
former architecture (Vaswani et al., 2017), upon which GPT and GPT-2 
are based, are so successful is that they were designed to enable 
computationally efficient training, which allows them to be trained on 
larger corpora. Repeated experiments all pointed towards the benefit of 
scaling, not only in natural language processing but in other domains 
such as vision, leading to the ‘‘bitter lesson’’ (Sutton, 2019): namely, 
that the best learning methods are general-purpose methods that can 
leverage the most data and compute.

But this observation — roughly, that bigger is better — raises 
several important questions, particularly because ‘‘bigger’’ is under-
specified. When training neural language mdoels, three high-level el-
ements need to be balanced: the size of the model, i.e., the number of 
trainable parameters, which we will refer to as 𝑃 ; the size of the train-
ing data, which we will refer to as 𝑇 ; and the number of computations 
that are performed during training, sometimes referred to informally 
as ‘‘compute’’, and which we will refer to as 𝐶.3 Using this notation, 
scaling refers to the practice of balancing 𝑃 , 𝑇 , and 𝐶 to optimize for 
the best model possible given one’s budget. A growing body of work 
has explored this question in recent years, both for natural language 
technologies (Bahri, Dyer, Kaplan, Lee, & Sharma, 2024; Henighan 
et al., 2020; Hestness et al., 2017; Hoffmann et al., 2022; Muennighoff 
et al., 2024; Rosenfeld, Rosenfeld, Belinkov, & Shavit, 2019) as well as 
in other fields such as for computer vision (Zhai, Kolesnikov, Houlsby, 
& Beyer, 2022) or protein sequence models (Hesslow, Zanichelli, Notin, 
Poli, & Marks, 2022). Typically, because the compute is the limiting fac-
tor when training LLMs, scaling research seeks to uncover the optimal 

2 While in the original usage of the term the context used to predict the 
current token consisted only of the preceding ones in the sentence, this term 
has recently expanded to include models that have access to both the preceding 
and following context, sometimes referred to as masked language models, such 
as the BERT model presented in Devlin, Chang, Lee, and Toutanova (2019).

3 Modern computers approximate real numbers with floating-point num-
bers. Compute costs are therefore measured most precisely in the number of 
floating-point operations or FLOPs. In this article, however, we will informally 
characterize compute costs as the number of times a model iterates over its 
training corpus during training.
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Fig. 1. Data Scale: Mainstream language models are trained on multiple orders of magnitude more word tokens than the amount available to a typical child.
 

choices for 𝑃  and 𝑇  for a fixed value of 𝐶. One influential approach 
proposed in Hoffmann et al. (2022) and Kaplan et al. (2020) is to 
empirically study this relationship for low values of 𝑃  and 𝑇  and then 
to extrapolate to higher values. Their results suggested that given a 
fixed compute budget, model architecture size, and training data size 
should scale proportionally, i.e., every time one doubles 𝑃 , one should 
also double 𝑇 . This has led to an ever-growing reliance on larger and 
larger model sizes and, importantly for our discussion, training corpora. 
State-of-the-art language models in 2025 are trained on trillions of 
words of text, and are referred to as large language models (LLMs) 
to distinguish them from their more modestly sized counterparts. For 
example, one recent system, Llama 3, was trained on as many as 15 
trillion tokens (Dubey et al., 2024). The scale of the increasingly larger 
training corpora is visualized in Fig.  1, which compares the training 
corpus size of today’s LMs with the typical amount of human linguistic 
experience at the onset of adolescence—under 100 million words for 
children growing up in the United States (Gilkerson et al., 2017).

The downsides of scaling for psycholinguistics

At the heart of this article lies a central question: How can neural 
language models further our scientific understanding of language? 
There is a certain irony in posing this question, given that connectionist 
architectures were not originally developed to process and manipulate 
text data, but rather to model human cognition (Elman, 1990; Rumel-
hart, McClelland, Group et al., 1986). Yet, because of their success 
in practical modeling applications, their cognitive-modeling origins 
have largely been overshadowed. In this section, we aim to bring 
neural networks back to these roots by illustrating two examples of 
how neural language models can advance research in linguistics and 
psycholinguistics (see also Linzen, 2019). We argue, however, that 
these contributions are only valid under certain conditions, which are 
often not met by large-scale models. Although our focus here is on the 
role of neural language models in the study of language, our arguments 
are broadly applicable to any neural-network architecture intended to 
model human cognition.

Stimulus–poverty arguments

The first type of contribution uses neural networks to assess stimulus-
poverty arguments. Stimulus-poverty claims are used to argue for a 
particular perspective on how children learn language and have been 
influential in the linguistics literature since they were first introduced 
around fifty years ago (Chomsky, 1965, 1979). Stimulus-poverty argu-
ments point out that the primary linguistic data available to children 
are compatible with a large number of hypotheses about how that data 
is underlyingly structured, including many generalizations that do not 
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hold for the language the child is trying to learn, or for any natural 
language for that matter. However, despite the fact that the data are 
insufficient to uniquely identify a generalization, children routinely 
arrive at the correct linguistic generalizations associated with their 
target language. The argument goes that this successful learning cannot 
be driven by patterns in the data — after all, the data are ambiguous — 
and must therefore be due to the child’s innate learning preference. The 
perspective that children are guided by inherently endowed learning 
constraints is known as the nativist perspective on language acqui-
sition (Clark & Lappin, 2010). Stimulus-poverty arguments also point 
to the rapidity with which children learn language as evidence that 
human infants do not entertain a large number of (eventually) incorrect 
hypotheses about their language. This suggests, again, that children are 
driven by inborn learning biases.

Neural networks, in particular neural language models, can inform 
this argument by offering one type of empirical evidence against 
stimulus-poverty claims (Lappin & Shieber, 2007). If an artificial learner
can acquire the correct generalizations about a language without any 
linguistically informed learning biases, that suggests that, in principle, 
this is possible for a human language learner as well. Such evidence 
does not conclusively prove that children learn language without 
an innate learning bias. Rather, it serves as an existence proof and 
blueprint for what features of language could be learned via a domain-
general, flexible learning model. For a deeper discussion of the role 
of neural network modeling in stimulus-poverty claims, see the dis-
cussions in McCoy, Frank, and Linzen (2018), Warstadt and Bowman 
(2020), Wilcox, Futrell, and Levy (2023a), and Yedetore, Linzen, Frank, 
and McCoy (2023).

How does the scaling paradigm impact the extent to which language 
models can inform stimulus-poverty arguments? We argue that neural 
language models can only disprove stimulus-poverty claims if they do 
not benefit from crucially relevant advantages that are unavailable to 
humans, with respect to both their inductive biases and their train-
ing data (Warstadt & Bowman, 2022). If the network has access to 
resources that are not available to human learners, then successful 
learning of a particular linguistic phenomenon no longer implies that 
this phenomenon is learnable, in principle, by humans. How humanlike 
in practice does a model learner have to be for its behavior to bear on 
stimulus-poverty claims? This is an active area of debate. There are 
some areas where language models have a clear disadvantage com-
pared to humans; for example, during pretraining, they only observe 
language passively, and cannot benefit from interactions with other 
agents. However, LMs also have advantages over humans, e.g., while 
children need to learn language from a continuous speech stream, 
LMs are provided with textual input that is already segmented into 
linguistically meaningful units. Our view is that access to segmented 
textual input does not confer enough of an advantage to discredit 
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stimulus-poverty claims, especially those relating to the acquisition of 
syntax and semantics (Warstadt & Bowman, 2022). However, one area 
that might confer a superhuman advantage is the amount of training 
data supplied to the model: if the LM is exposed to many thousands of 
times more sentences than humans, it may encounter plenty of evidence 
as to the correct generalization that is not available to human learners. 
In order to retain the validity of stimulus-poverty claims, then, it is 
necessary (at a minimum) to train models on no more examples of the 
linguistic phenomenon in question than is typical for human language 
learning.4

An additional reason why scaled-up language models bear less on 
stimulus-poverty arguments has to do with training data genre and 
quality. Mainstream large language models are trained on datasets of 
text scraped from the internet. Those tend to include text in dozens 
of different languages, as well as a substantial amount of code (Dubey 
et al., 2024, 17% of the Llama 3 training corpus). Worse, the content 
of the training corpus is often a proprietary trade secret, or else poorly 
documented or hard to search; indeed, it is not unreasonable to assume 
that training corpora include many linguistics and cognitive science 
textbooks or articles that discuss issues of learnability and give key ex-
amples of the critical generalization patterns. While logically speaking 
one can imagine scaling models up on clean monolingual English text 
that excludes linguistics articles, in practice it is difficult to construct 
clean corpora that are large enough to train mainstream LLMs, and the 
organizations that can afford to train those models in practice do not 
have an incentive to do so.

In summary, while models trained at smaller data scales can play an 
important role in assessing stimulus-poverty claims, mainstream large-
scale LMs are limited insofar as how they bear on questions of language 
learning in people. Here, the issue with scaling is not directly the fact 
that model training requires a large amount of compute; rather, the 
limitation is caused by the corresponding scaling up of training data.

Testing probabilistic theories of language processing

The second type of contribution uses language models to empir-
ically test theories of language processing that rely on probability 
distributions over words. In particular, language models have been 
important for developing and refining theories for the role of probabilis-
tic prediction in language processing. As an example, we will discuss 
the impact that language models have made on the development of
surprisal theory (Hale, 2001; Levy, 2008). Because scientists first 
started recording language processing behaviors, it has been widely 
observed that words that are less predictable in context are more 
difficult to process (Ehrlich & Rayner, 1981; Staub, 2015). Surprisal 
theory formalizes this observation by hypothesizing that the effort it 
takes to process a word is a (linear) function of its information content, 
or surprisal, the negative log probability of a word in its context. 
Previously, surprisal theory was tested primarily using non-neural-
network based 𝑛-gram models (Smith & Levy, 2013), and sometimes 
using probabilistic context-free grammar (PCFG) language model (Hale, 
2001). While such studies provided important early validation of the 
theory, those that used 𝑛-gram language models had several limitations, 
the most important being that the models used to estimate probabilities 
had a fixed window length, meaning that words outside of this fixed 
context were not factored into the estimate. While PCFG language mod-
els do not suffer from the fixed window length issue, they are limited in 
another way: they need to be trained on syntactically annotated data, 
of which we only have a small amount.

4 Human language learners are exposed to approximately 3 to 7 million 
words per year (Gilkerson et al., 2017; Hart & Risley, 1995). Therefore, by the 
time a child turns 12, an age by which they will have achieved grammatical 
competence that is adult-like in many respects, they will have experienced up 
to 100 million words. In comparison, mainstream language models are trained 
on multiple orders of magnitude more data.
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The advent of neural-network-based language models allowed re-
searchers to compute more accurate probability estimates, enabling 
a more rigorous empirical assessment of surprisal theory. As a re-
sult, the relationship between word-level probabilities and human 
language processing behaviors has seen a surge of interest in the 
last five years: Using estimates from language models, some studies 
have validated the linear relationship between word-level surprisal 
and reading time (Shain, Meister, Pimentel, Cotterell, & Levy, 2024; 
Wilcox, Pimentel, Meister, Cotterell, & Levy, 2023), while others have 
challenged this original finding (Brothers & Kuperberg, 2021; Hoover, 
Sonderegger, Piantadosi, & O’Donnell, 2023; Meister, Pimentel, Haller, 
Jäger, Cotterell et al., 2021). Other studies have investigated the 
surprisal–reading time relationship for cases where people read gram-
matically incorrect or implausible material, finding that reading times 
and surprisal values are poorly matched in these cases (Arehalli, Dillon, 
& Linzen, 2022; Huang et al., 2024; Van Schijndel & Linzen, 2021; 
Wilcox, Vani, & Levy, 2021). Recent work has gone beyond word-by-
word reading times and used estimates from neural network models to 
argue that probability-based measures underlie decisions to skip words 
during reading (Pimentel, Meister, Wilcox, Levy, & Cotterell, 2023) 
or regress to a previous word (Wilcox, Pimentel, Meister, & Cotterell, 
2024). Looking beyond linguistic processing, studies have used neural-
network-based architectures to investigate the relationship between 
statistical co-occurrence and syntactic structure (Futrell, Qian, Gibson, 
Fedorenko, & Blank, 2019; Hoover, Du, Sordoni, & O’Donnell, 2021). 
The common theme between all these works is that each uses neural-
network-based language models to estimate underlying word-level 
probability distributions, which can then be used to better empirically 
test theories of language processing.

How does the bigger and bigger trend of language modeling put 
this type of contribution in jeopardy? As language models grow in 
terms of architecture size and training data, their predictions appear to 
diverge more and more from those of people. For example, it has been 
shown that language models memorize large passages of text from their 
training data and will often repeat this text verbatim during generation 
tasks (Carlini, Ippolito, Jagielski, Lee, Tramèr et al., 2023), something 
that people do not do during natural language production (although 
they are certainly capable of such tasks, e.g., actors memorizing a 
script). This tendency towards long-form memorization as well as some 
similar types of biases, such as memorizing details only in certain 
contexts (Yehudai et al., 2024), suggests that, while better at language 
modeling, bigger models are worse for providing humanlike probability 
distributions that can be used to further psycholinguistic theories.

A recent line of work has clearly demonstrated the disadvantage 
of bigger models when it comes to modeling incremental reading 
times. To do so, Oh and Schuler (2023) and Shain et al. (2024) 
measured different models’ predictive power: how well surprisal values 
estimated from those models predicted human reading times. Earlier 
work had suggested that as models’ ability to predict upcoming words 
improved, their predictive power also increased (Goodkind & Bicknell, 
2018; Wilcox, Gauthier, Hu, Qian, & Levy, 2020), albeit not for all 
languages (Kuribayashi, Oseki, Ito, Yoshida, Asahara et al., 2021). 
However, Oh and Schuler and Shain et al. found that for more recent 
models, the trend reverses. In other words, many of the models released 
in the past few years, which achieve state-of-the-art performance on a 
variety of natural language processing tasks, perform worse than their 
smaller-scale counterparts at predicting human reading times (Oh & 
Schuler, 2023; Shain et al., 2024). One possible explanation for this 
finding is that very large models are better than humans at predicting 
low-frequency words, thus predicting faster reading times for these 
items than is observed in the human data (Oh, Yue, & Schuler, 2024).

Unlike in Section ‘Stimulus–poverty arguments’, where the limita-
tion arose due to scaling dataset size, LMs’ misalignment with human 
behavior is likely due to the combination of large model size and large 
dataset scale. That being said, this work suggests that, in practice, 
models that both have fewer trainable parameters and are fit on smaller 
datasets are optimal for the types of studies described above.
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The downsides of scaling for natural language processing

The scaling paradigm has downsides not only for psycholinguistics 
but also for language technologies. We survey some of these downsides 
in this section.

Dataset issues: Opacity and controllability. The scaling paradigm re-
quires models to be trained on ever larger datasets. Very large datasets 
have several undesirable properties: First, they are opaque, meaning 
that their properties are not well understood. Although there have 
been recent calls for better dataset documentation (Gebru et al., 2021), 
most state-of-the-art LLMs are trained on datasets that are proprietary 
and are therefore fully opaque, or understood at only a very high 
level. Even for projects that do release some of all of their pretraining 
data (Biderman et al., 2023b; Groeneveld et al., 2024; Scao et al., 
2022), the sheer size of the data can make it challenging to get an 
overview of. For example, the creators of The Pile (Gao et al., 2020), 
a large publicly available pretraining corpus, report that it is about 
97% English, but say they cannot provide a reliable estimate of which 
other languages are represented in the dataset. Second, very large 
datasets are not controllable: it is hard to manipulate the contents of 
the dataset, for example, to remove harmful or toxic language, or to 
perform controlled studies of the impact of adding or removing pieces 
of the training data on a LM’s behavior. Because current datasets are 
so large, it is both expensive and time-consuming to modify them, and 
because they are so opaque, it is not guaranteed that any given manipu-
lation will successfully change all of its intended targets. Consequently, 
researchers cannot make good guarantees about the behavior of models 
trained on them.

Barrier to entry and homogeneity. Scaling produces a high barrier to 
entry for what is considered cutting-edge language modeling research. 
The training budgets for large-scale language modeling projects run 
into the tens or hundreds of millions of dollars, due to the required 
personnel, computer hardware, and energy costs (Sevilla, Heim, Ho, 
Besiroglu, Hobbhahn et al., 2022; Strubell, Ganesh, & McCallum, 2019). 
This has the potential to result in homogeneity of research directions, 
as those who can afford to participate in this research tend to be 
large technology corporations. Additionally, such high-cost research 
can produce a risk-averse research culture, even within well-funded 
organizations: if it costs significant amounts of money and compute to 
produce large language models, research groups will be more likely to 
focus only on methods that are highly likely to succeed. This increases 
the likelihood of scientific stagnation.

There are several proposed ways to broaden and democratize lan-
guage model pretraining, several of which suggest distributing the over-
head of training across many groups of researchers (Dean et al., 2012; 
McMahan, Moore, Ramage, Hampson, & Arcas, 2017). One benefit of 
scaled-down pretraining over these other training approaches is that, 
rather than splitting the training cost between multiple parties, scaled-
down pretraining simply lowers the cost altogether. This means that new 
architectures and methods can be prototyped and tested quickly and 
cheaply and that large teams are not necessary. The scaled-down ap-
proach also aligns with the goals of the Green AI movement (Schwartz, 
Dodge, Smith, & Etzioni, 2020), which aims to reduce the carbon foot-
print of conducting AI and NLP research. Scaled-down pretraining is a 
beneficial paradigm alongside other proposals as a way to democratize 
and broaden participation in NLP and machine learning research.

Our recommendations for human-scale language modeling

Scientific progress that takes advantage of the synergies between 
psycholinguistics and NLP will require a dedicated focus on data-
efficient and human-scale language modeling. Below, we outline sev-
eral concrete proposals for how this can be accomplished.
5 
1. A curated set of cognitively inspired training datasets. We 
recommend creating standard training datasets of a size com-
mensurate with the amount of linguistic experience available to 
humans (Linzen, 2020). These datasets should ultimately include 
not only text, but also audio, transcriptions of audio, and multi-
modal data, such as aligned text–image and text–video data. The 
data domain should resemble the input to children and, in the 
ideal setting, would be recorded entirely from children’s environ-
ments.5 These datasets should be well-documented (Gebru et al., 
2021) and should be made publicly available under a permis-
sive license that allows academic, nonprofit, and private-sector 
research.

2. A curated set of standard trained models for psycholin-
guistics research. We recommend training and releasing open-
weights models that are easily accessible and available in mul-
tiple languages. These models should be trained on publicly 
available datasets whose properties are well known, such as 
the cognitively inspired ones described in the previous para-
graph. Scripts should be available to easily extract word-level 
probabilities from these models, enabling broad access in the 
psycholinguistics and linguistics communities, including to re-
searchers who do not have the computational infrastructure to 
train new models.

3. Incentives for data-efficient and small-scale language mod-
eling research. Incentive structures should be developed to 
encourage research that explores data-efficient pertaining. Such 
incentives could include workshops or shared tasks, such as the 
BabyLM Challenge discussed below, but also special issues of 
journals dedicated to human-scale pretraining (such as the issue 
in which this article is published).

We note that these recommendations overlap to some extent with 
ongoing efforts in the NLP and machine learning communities intended 
to improve the scientific and social benefits of LMs. This includes 
calls for better documentation of LM training corpora (Gebru et al., 
2021; Lhoest et al., 2021; Ostendorff, Suarez, Lage, & Rehm, 2024) 
and discussion of the risks and benefits of open models, both in terms 
of the algorithm used to train the model and the final set of model 
weights (Biderman et al., 2023a; Bommasani et al., 2024).

Incentivizing human-scale language modeling: The BabyLM chal-
lenge

We next report on an effort we undertook to realize the recom-
mendations outlined above—the BabyLM Challenge shared task. A
shared task is similar to a competition, except that in addition to 
specifying win conditions, organizers often provide additional resources 
that help participants and lower the barrier to entry. Furthermore, 
the goal of a shared task is not just to win, but also to produce 
insights that will benefit a broader research community. Shared tasks 
have been used successfully in the past to bridge linguistics, NLP, 
and machine learning. For example, previous shared tasks have asked 
entrants to use NLP technologies to predict eye gaze data (Hollenstein, 
Chersoni, Jacobs, Oseki, Prévot et al., 2021), and morphological inflec-
tion schema (Cotterell, Kirov, Sylak-Glassman, Yarowsky, Eisner et al., 
2016). The BabyLM Challenge was held in December 2023 as part of the 
CoNLL conference (the SIGNLL Conference on Computational Natural 
Language Learning).

The objective of the BabyLM Challenge was to train a language 
model using the same number of words of English available to a typi-
cally developing child in the United States—under 100 million words. 

5 Egocentric audio–video recordings of children’s environments are avail-
able (Sullivan, Mei, Perfors, Wojcik, & Frank, 2021), but the input to a child 
is several orders of magnitude larger than what has been collected so far.
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The structure of the challenge was designed to produce several concrete 
benefits for the NLP and computational linguistics research community. 
To keep participants on a level playing field, we collected a dataset 
of 100 million words, meeting recommendation (1) above. To enter, 
participants trained and shared models, following recommendation (2). 
By hosting the challenge at a conference and awarding prizes for the 
best models, we followed recommendation (3). While the challenge was 
partially motivated by the psycholinguistics considerations discussed in 
Section ‘The downsides of scaling for psycholinguistics’, we also wanted 
it to be useful for NLP practitioners interested in training efficient, 
small-scale language models (perhaps for the reasons mentioned in 
Section ‘The downsides of scaling for natural language processing’). 
Some of the features of the challenge were therefore chosen to balance 
this consideration with our cognitive modeling goals, as well as to pro-
vide a level playing field for participants and enable fair comparisons 
across submissions. Below, we describe the structure of the challenge, 
summarize the results, and discuss their implications for psycholin-
guistics research. We also briefly discuss two follow-up experiments 
that we ran to answer several outstanding questions raised by the 
challenge about specific model architectures; for a fuller discussion 
of these experiments, see Appendix A. For this article, we keep the 
discussion relatively high-level; we encourage readers to refer to the 
original call for papers (Warstadt, Choshen, Mueller, Williams, Wilcox 
et al., 2023a) or the challenge proceedings (Warstadt et al., 2023) for 
more information about the technical aspects of the challenge. Each of 
the systems submitted to the challenge was accompanied by a paper 
describing the system; all of these papers are available in the challenge 
proceedings.

Overall structure: the three tracks

Submissions to BabyLM were required to conform to one of three 
guidelines, termed tracks. The three tracks were Strict , Strict-Small, 
and Loose. Participants in all tracks were allowed a constant number 
of English-language training tokens — 100 million in Strict and Loose
and 10 million in Strict-Small— to be used for all software used in 
the pipeline. Loose track submissions were encouraged to train on data 
beyond the linguistic text data provided through the shared task, for ex-
ample, by conducting additional training on speech audio signal, code, 
music, or visual input. Language model training can involve making 
several passes over its dataset, where each pass is called an epoch. For 
the challenge, participants were allowed to train for as many epochs 
as they wished: multiple passes were not counted towards the 100M 
or 10M budget. Whether performing multiple epochs in training is 
cognitively plausible is an open question. Humans do not, of course, 
receive repeated exposure to the same stimuli. But there is evidence 
that we repeat some of the information we process to ourselves, for 
example, in memory replay (Carr, Jadhav, & Frank, 2011). That being 
said, because the winning submission performed hundreds of passes 
over the training corpus, we performed an experiment investigating 
the impact of epochs and found that most of the benefits of repeated 
exposure to the data occurred in the first 20 epochs. We describe these 
experiments in Appendix A, and otherwise put aside the issue of the 
cognitive plausibility of multiple-epoch training.

Training corpus

A major contribution of the BabyLM Challenge was the training 
dataset, which we refer to as the BabyLM Corpus. Ideally, of course, 
our data would exactly reproduce the input received by a child. Because 
such datasets are currently not available, our goal in this project was 
to make a step in the direction of this ambitious goal. One compromise 
we made, for example, is that our corpus consisted only of written 
texts or transcriptions of spoken language, while children’s language 
exposure comes primarily from auditory or visual input (the latter in 
the case of signed languages). We reasoned that a conventional textual 
6 
training corpus, despite this limitation, would attract a larger number 
of participants to the challenge.

Language model training corpora typically consist of text down-
loaded from web pages, online resource sites such as Wikipedia, and 
forums such as Reddit. In addition, they often include a large amount 
of non-linguistic content, such as computer code (e.g., Dubey et al., 
2024). The BabyLM Corpus deviated from this typical composition in 
several respects: First, the majority (≈ 56%) of the pretraining corpus 
was sourced from transcribed or scripted speech. This choice was made 
because much of the input to the typical child comes from face-to-
face interaction, either through speech or sign. Transcribed speech 
may be particularly relevant when it comes to grammar learning, as 
some grammatical constructions, such as nominalizations and passives, 
are far more frequent in writing, while others, such as first- and 
second-person pronouns, are more frequent in speech (Biber, 1991).

Another consideration was the genre of the transcribed speech. 
Child-directed speech has been used as the sole or primary data source 
in some previous work aiming to model child language acquisition 
with LMs (Huebner, Sulem, Cynthia, & Roth, 2021; Pannitto & Herbe-
lot, 2020; Perfors, Tenenbaum, & Regier, 2011; Reali & Christiansen, 
2005; Yedetore et al., 2023). While there is wide variability across 
cultures in the quantity of child-directed speech that is available to 
children, as opposed to overheard adult-to-adult interactions (Cristia, 
Dupoux, Gurven, & Stieglitz, 2019), many researchers hypothesize that 
children will learn particular words or structures more quickly given 
access to simpler child-directed inputs (see, e.g., Foushee, Griffiths, 
& Srinivasan, 2016; Shneidman & Goldin-Meadow, 2012). That said, 
children are routinely exposed to adult-to-adult interactions, and the 
extent to which adults vary their language when speaking to children 
differs greatly between cultures and socio-economic groups (Cristia 
et al., 2019). Accounting for these considerations and the availability 
of high-quality child-directed speech/text, about 40% of the data in 
the BabyLM Corpus came from sources either intended for children 
or appropriate for children, including child-directed speech, children’s 
books, educational videos, and simplified English. Due to the limited 
amount of data in these genres, the remaining 60% came from adult 
interactions or writing for adult audiences, including Wikipedia articles 
and selections of books from Project Gutenberg. For more detailed 
descriptions of the data sources and preprocessing, see Warstadt et al. 
(2023). For the Strict-Small training corpus, we kept the proportion of 
data sources the same, sampling 10% from each source.

Evaluation tasks

Alongside the corpus, we also provided a pipeline to automatically 
evaluate LMs on a wide range of linguistic tasks. The pipeline, which 
was released as a public code repository,6 consisted of well-known NLP 
evaluation benchmarks. Our evaluation tasks came in two paradigms: 
The first — called zero-shot evaluation — relied on obtaining outputs 
from the pretrained models. In our case, all of our zero-shot evaluations 
came from the BLiMP benchmark (Warstadt et al., 2020), which con-
sists of tasks that evaluate whether the language models’ predictions are 
consistent with the syntactic structure of English. Tasks consist of sev-
eral example sentences, each of which targets a particular phenomenon 
of English syntax, for example, subject–verb number agreement. Each 
example consists of a minimal pair of sentences, where one sentence 
is acceptable and the other is unacceptable, differing as minimally as 
possible from the acceptable sentence. A model is correct on a given 
example if it assigns a higher probability to the correct sentence in the 
minimal pair (Marvin & Linzen, 2018). We also created a supplement to 
the BLiMP tasks, which tests phenomena not captured by BLiMP. Unlike 
the original BLiMP tasks, which were released ahead of time, this 
supplement was released two weeks before the submission deadline. 

6 https://github.com/babylm/evaluation-pipeline

https://github.com/babylm/evaluation-pipeline
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This held-out evaluation was intended to reward models that could 
generalize well to never-seen-before evaluations.

The second evaluation paradigm involved fine-tuning, where we 
adapt a pretrained language model to a specific task by continuing 
to train it on a small dataset. For example, a pretrained LM that was 
originally trained on word prediction may be fine-tuned to predict 
entailment relationships between sentences. This type of evaluation is 
useful because during fine-tuning one can change the training objective 
of the model, such that it can be adapted into a tool for assigning 
categories to an input or giving binary judgments. Our fine-tuning 
evaluations included a subset of the tasks included in GLUE and Su-
perGLUE (Wang et al., 2019; Wang, Singh, Michael, Hill, Levy et al., 
2018), consisting of various NLP tasks. Most of these tasks involve fine-
tuning the model to perform classification; given an input sentence, the 
model is expected to sort the input into one of two classes. An example 
of such a classification task is natural language inference (NLI), where 
a model is given a premise sentence and a hypothesis sentence and 
has to categorize the relationship between them as entailment,
contradiction, or neutral. An example premise is Three tall boys 
are playing soccer, and a hypothesis is Some boys play sports. Other tasks 
used similar techniques to investigate related aspects of meaning.

An additional fine-tuning task we included was the Mixed Sig-
nals Generalization Set (MSGS; Warstadt, Zhang, Li, Liu, & Bowman, 
2020b). For this task, models were fine-tuned on an ambiguous training 
set where the labels were consistent with both a linguistic general-
ization and a surface generalization. They were then evaluated on 
examples that disambiguate which generalization the model converged 
on (if any). Surface behavior meant models were generalizing based 
on things like sentence length, orthography, or whether or not the 
sentence contained a particular word; linguistic generalization included 
whether or not the sentence contained an irregular past-tense form, or 
whether it contained a control construction. MSGS evaluates models 
on the assumption that one would like models to be more sensitive 
to linguistic features than surface features, as a systematic preference 
for abstract linguistic properties would make them better learners of 
language.

To compute the aggregate score across tasks, we weighted BLiMP 
and the BLiMP-supplement together at 50% (weighting all sub-tasks 
equally), GLUE and SuperGLUE together at 30%, and MSGS at 20%. 
While we do not have a strong motivation for this particular weighting, 
we found that the identity of the winning system for each track was not 
very sensitive to the weighting.

Baseline and skyline models

We trained and evaluated three baselines transformer models: OPT-
125M (Zhang et al., 2022), RoBERTa-base (Liu et al., 2019), and 
T5-base (Raffel et al., 2020). As a skyline reflecting the state of the 
art in 2023, we also used our pipeline to evaluate Llama 2 (Touvron 
et al., 2023) (the variant with 70 billion parameters), which is a larger 
model trained on a massive corpus. Due to computational constraints, 
we evaluated Llama on GLUE and SuperGLUE using in-context learning 
instead of fine-tuning.

Submitted systems and results

We received 31 papers and 162 models in total. Some participants 
submitted to multiple tracks; we show data for unique participants 
in Fig.  2. Results of all models are shown in Fig.  3.7 The scores of 

7 GLUE human scores are obtained by training crowd workers on each NLP 
task — for example, teaching them to classify entailment relations between 
sentences — as well as giving them 20 examples. For the BLiMP benchmark, 
human scores are obtained by asking naive participants to choose between 
sentences in a forced-choice task and calculating the proportion of times 
participants chose the grammatical variant.
7 
Fig. 2. Number of participants who submitted to each track, with multiple submissions 
counted once.

the top-performing models in each track are detailed in Table  1. Note 
that MSGS scores and BLiMP Supplement scores are lower than BLiMP 
and GLUE scores. For the BLiMP Supplement, this is likely due to the 
nature of the supplement tasks, which target well-formedness at the 
discourse level, including turn-taking and question-answer congruence. 
The lower supplement scores suggest that these sorts of generalizations 
are difficult to learn in a data-limited setting. For MSGS, because this 
task has not been run with human subjects, it is harder to say what 
counts as a low or high score. What MSGS does show is that all of our 
high-performing models (except the Strict-Small McGill-BERT) have a 
preference for structural generalizations over surface-level generaliza-
tions and that this preference is similar to the preference exhibited by 
large, pretrained models (i.e., Llama 2 and RoBERTa-Base). We believe 
that these results are important because they give us information about 
how the BabyLMs are solving our other evaluation tasks. If models 
had gotten zero or negative scores on MSGS, this would suggest that 
their performance on BLiMP and GLUE was likely due to memorized 
surface-level generalizations. However, because they (nearly) all scored 
positively on MSGS, this suggests that their performance on these other 
tasks could be due to the truly linguistic generalizations they acquired 
during pretraining.

Below, in Section ‘Common Methods’, we break down the sub-
missions based on the type of approach they use and discuss the 
effectiveness of these different approaches. Then, in the remainder of 
the section, we discuss the winning models in each track and what 
they can tell us about human language learning and processing. Before 
we discuss the details of any model or approach, we start by pointing 
out a few high-level takeaways from these results, beginning with 
comparisons between the different tracks. The strongest results were 
achieved by models in the Strict track. Given the Strict track’s larger 
training corpus relative to the Strict-Small corpus, it is not surprising 
that these models performed better. However, there are two interesting 
trends: First, Strict models did not outperform those in Strict-Small by 
a large amount, even though the size of training data was an order of 
magnitude larger. For example, there are only two models in the Strict
track that achieve higher GLUE scores than the best-performing Strict-
Small model. Second, models in the Loose track tended to perform worse 
in the aggregate than those in the Strict-Small track, even though they 
potentially had access to additional, non-linguistic, data. One conclu-
sion we can draw from this is that learning from multiple modalities 
of data presents a challenge in its own right, and that current model 
architectures are not optimized to efficiently utilize multiple types of 
inputs during training.

The other important high-level takeaway is that many BabyLM 
models are very close to the Llama 2 skyline, and also close to achieving 
human-level performance on BLiMP and GLUE (i.e., they are near the 
green lines in Fig.  3). Interestingly, for BLiMP, the top-performing 
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Fig. 3. Summary of BabyLM Submission Results: Each point represents an official model submission. Scores are broken down into performance on BLiMP (𝑥-axis), GLUE and 
SuperGLUE (𝑦-axis), and MSGS (color). Submissions that achieved an aggregate score above 0.6 are labeled in gray. Green dashed lines show Llama 2 skyline performance, and 
green solid lines show human performance. The metric for MSGS is the Matthews correlation coefficient between the model’s predictions and the labels according to the linguistic 
generalization on the test set. A coefficient of 1 reflects systematic linguistic generalization, and −1 is a systematic surface generalization. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Top 3 systems for each track, as well as the baseline model with the highest aggregate score. We also show ‘‘skyline’’ models: RoBERTa-base and Llama 
2 trained on their full pre-training corpora. Each task score is simply the mean score across each of its subtasks. The aggregate score is a weighted 
average of each task. We bold the highest-scoring system for each task within each track.
 Model BLiMP GLUE MSGS BLiMP-Supp. Aggregated 
 Llama 2 0.84 0.84 0.26 0.75 0.71  
 RoBERTa-Base 0.87 0.79 0.24 0.76 0.70  
 

St
ric
t

ELC-BERT (Charpentier & Samuel, 2023) 0.85 0.78 0.47 0.77 0.74  
 BootBERT (Samuel, 2023) 0.86 0.79 0.28 0.72 0.70  
 McGill-BERT (Cheng, Aralikatte, Porada, Piano, & Cheung, 2023) 0.84 0.72 0.25 0.71 0.67  
 Best Baseline (OPT-125M) 0.75 0.70 0.13 0.68 0.60  
 

St
ric
t-S
m
al
l ELC-BERT (Charpentier & Samuel, 2023) 0.80 0.74 0.29 0.67 0.66  

 MLSM (Berend, 2023) 0.79 0.71 0.17 0.57 0.61  
 McGill-BERT (Cheng et al., 2023) 0.75 0.70 0.13 0.68 0.60  
 Best Baseline (OPT-125M) 0.63 0.62 0.10 0.53 0.50  
 

Lo
os
e Contextualizer (Xiao, Hudson, & Al Moubayed, 2023) 0.86 0.73 0.58 0.63 0.73  

 McGill-BERT (Cheng et al., 2023) 0.80 0.68 −0.02 0.57 0.57  
 BabyStories (Zhao, Wang, Osborn, & Rios, 2023) 0.78 0.61 0.03 0.65 0.56  
model is just a few percentage points shy of human performance. These 
results point to two important takeaways: (1) Human-level results have 
not been achieved yet. However, (2) connecting these results to our 
discussion in the previous section, we argue that the outcomes of the 
BabyLM Challenge bear on the stimulus-poverty arguments raised in 
Section ‘Stimulus–poverty arguments’. While previous studies evalu-
ating poverty of the stimulus (POS) claims have tended to use large, 
pretrained language models (e.g., Warstadt et al., 2020; Wilcox et al., 
2023), the results of the challenge demonstrate that neural network 
learning algorithms are capable of learning linguistic generalizations, 
even when trained on human-scale datasets.

This being said, one challenge in connecting these results to POS 
claims is that our grammatical assay, BLiMP, tests many linguistic 
phenomena across several tasks, not all of which have been the locus of 
POS arguments. To allay this concern, we post hoc divided the subtasks 
based on whether they had been raised in debates on learnability 
in the previous literature. Our POS-relevant subtasks included ones 
that targeted island constraints, filler–gap dependencies, and subject–aux 
inversion. In Fig.  4, we compare average cross-submission performance 
on these tasks against all other subtasks in BLiMP. We find virtu-
ally no difference, suggesting that models are capable of acquiring 
generalizations about these hard-to-learn syntactic constructions.
8 
Fig. 4. BLiMP Subtask Performance: ‘‘POS Relevant Tasks’’, tasks that are relevant to 
poverty-of-the-stimulus debates, include ones that target filler–gap dependences, island 
effects, and subject–aux inversion. Error bars are 95% CIs across model scores on an 
individual task. Within each track, models on average perform similarly on POS-relevant 
and non POS–relevant tasks.

Common methods

To help us understand which approaches were effective, we hand-
coded each submission based on the method(s) it employed. We show 
the breakdown of approaches in Fig.  5, and we visualize the trends 
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Fig. 5. Total number of submitted models that used each of the nine approaches in 
our typology. We count at most one submitted model per participant per track.

in Fig.  6. The three most important approaches for our purposes here 
were.

1. Curriculum learning: In curriculum learning, the corpus is 
sorted based on a metric — typically simplicity — and models 
are first trained on simpler examples before graduating to more 
difficult ones. The hypothesis is that this would lead to more 
effective or faster learning than presenting the data in a random 
order (Bengio, Louradour, Collobert, & Weston, 2009). Curricu-
lum learning has some parallels to human language learning, 
in particular to child-directed speech, which is characterized by 
its reduced vocabulary size and simple constructions (Cameron-
Faulkner, Lieven, & Tomasello, 2003). Some evidence suggests 
that child-directed speech helps language learning, especially 
with early vocabulary development and reading skills (Rowe, 
2008); other work suggests that language learning proceeds at 
similar paces in groups where child-directed speech is not em-
ployed as frequently (Heath, 1983; Ochs, 1982). This approach 
can also be seen as related to the idea that successful learning 
depends on ‘‘starting small’’ (Elman, 1993).

2. Data preprocessing: Modifications to the underlying data, or 
the way the data is presented to the model with the exception 
of curriculum learning approaches.

3. Architectural modifications: This category includes systems 
that implemented changes to standard neural network archi-
tectures; we did not include methods that simply modified the 
default values of standard hyperparameters such as the learning 
rate.

While curriculum learning was the most popular approach in the 
submitted systems, it turned out to produce only marginal gains above 
the baselines. Data preprocessing and architectural modifications were 
found to be the most effective strategies in our meta-analysis.

All of the models submitted to the competition used a pre-existing
backbone architecture (Fig.  7). All of the architectures were based 
on transformers (Vaswani et al., 2017), and many submissions were 
based on BERT (Devlin et al., 2019) and GPT (Radford et al., 2018). 
The backbone architectures differ in a number of ways, the most 
significant of these is that BERT and models derived from it, such 
as RoBERTa and DeBERTa, are masked LMs, meaning they predict 
9 
a word given its surrounding context, whereas Llama and GPT are 
autoregressive LMs, meaning that they predict a word given only its 
preceding context. Overall, we find that models based on BERT, as well 
as several of its variants, including DeBERTa and LTG-BERT, achieved 
higher performance. In fact, the winning models for both the Strict and
Strict-Small tracks used the LTG-BERT architecture. In the next sections, 
we discuss these winning submissions and ask what, if anything, they 
can tell us about human language learning or language processing.

ELC-BERT (method: architectural modification)

Architectural modifications. The winner of both the Strict and Strict-
Small tracks was ELC-BERT (Charpentier & Samuel, 2023). This model, 
as well as the runner-up submission Boot-BERT (Samuel, 2023), used as 
their starting point the LTG-BERT architecture from Samuel, Kutuzov, 
Øvrelid, and Velldal (2023). LTG-BERT combines four modifications 
to the Transformer architecture, all of which are relatively minor and 
were introduced in earlier papers: disentangled attention, enhanced 
layer normalization, GEGLU feed-forward modules, and scaled-down 
weight initialization. The most interpretable one is disentangled atten-
tion, drawn from DeBERTa (He, Liu, Gao, & Chen, 2021). The attention 
mechanism (Bahdanau, Cho, & Bengio, 2015), a central component 
of the transformer architecture, updates the representation of a word 
based on the representations of the other words in the context. In the 
original transformer, this mechanism has only indirect access to the 
position of the context words relative to the word whose representation 
is being updated. By contrast, disentangled attention explicitly factors 
the positions of each of the context words into the attention mechanism. 
The remaining three modifications are closer to the implementational 
level (in the sense of Marr’s (2010) levels of analysis), and it is therefore 
harder to assign an algorithmic-level interpretation to them (see Ap-
pendix B for details). ELC-BERT implements an additional modification 
on top of these four: whereas in a standard transformer the input to 
each layer is the output of the last one, in ELC-BERT the input to each 
layer is a weighted sum of the outputs of all previous layers (e.g., He, 
Zhang, Ren, & Sun, 2016).
Cognitive interpretation. What, if anything, can the success of the archi-
tectural modifications implemented in ELC-BERT tell us about human 
language learning? As mentioned above, most of the modifications 
concern implementation issues related to neural network optimization, 
and are difficult to interpret in cognitive terms; see Appendix B. That 
being said, one of the architectural modifications — disentangled rep-
resentations of word position and word content — could plausibly 
introduce an inductive bias that makes it easier to learn abstract 
syntactic roles such as modifier or even subject, and as such could 
lead to stronger performance on benchmarks such as BLiMP; for a 
classic statement of the importance of separating roles and fillers in 
neural networks, see Smolensky (1990). Because ELC-BERT implements 
multiple simultaneous modifications on top of the standard transformer 
architecture, however, it is difficult to determine how much of its 
success can be attributed to this particular modification. In future work, 
this issue can be addressed with a controlled experiment that keeps the 
low-level modifications constant and varies only the type of attention 
mechanism used by the model.
Number of epochs. Apart from these architectural modifications, the 
submissions based on LTG-BERT stand out in that they were trained for 
many more epochs than other submissions. In particular, Charpentier 
and Samuel (2023) train models for over 450 epochs for their Strict
submission, and over 2,000 epochs for their Strict-Small submission, 
which is much higher than is standard practice. This introduces a 
confound—did ELC-BERT perform well because of architectural modi-
fications or because it was trained for far longer than any other model? 
To investigate this question, we conducted a follow-up experiment, 
presented in detail in Appendix A, where we trained ELC-BERT and 
LTG-BERT for only 20 epochs. The models’ scores dropped slightly 
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Fig. 6. Effect of Training Strategy and Backbone Architecture: Each point represents a submission. Some submissions may appear more than once if they use multiple strategies. 
Shapes show the challenge track to which the model was submitted. Colors show the backbone architecture on which the model is based. Gray bars show within-category aggregates. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Effect of Backbone Architecture: Each point represents a submission. Shape indicates the challenge track. Gray bars show within-category aggregates.
and were now in line with other top-scoring models. In other words, 
LTG-BERT can perform well with a much smaller compute budget 
than what was used in the team’s submission, but when controlling 
for the compute budget, this architecture is not superior to others. 
We also found that LTG-BERT and ELC-BERT performed comparably, 
and concluded that it is the four modifications implemented in LTG-
BERT architecture, rather than the skip connections — the additional 
modification introduced by ELC-BERT — that are responsible for the 
model’s win.

Contextualizer (method: data augmentation)

The winner of the Loose track was the Contextualizer model of Xiao 
et al. (2023), which used a data augmentation scheme in which addi-
tional training samples are synthetically created by combining chunks 
of text from different sources in the dataset. Repeating this process 40 
times for each chunk gives an augmented training corpus that has as 
many training samples as a four billion word corpus, but only uses 
100 million words. Data augmentation is a common way to introduce 
inductive biases into models without changing their architecture. To 
make an image recognition system more robust to the precise loca-
tion of the object in the image, for example, the system might be 
presented with many crops of the same training image; for a review, 
see, e.g., (Wang & Perez, 2017). In the case of language, in particular, 
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repeating a syntactic constituent in many different environments is 
likely to help the learner recognize that the relevant sequence of words 
is a constituent; for example, if the learner observes the noun phrase
the big blue ball as both a fragment answer to a question and also as 
a fronted element in a sentence, this provides evidence for its status 
as a constituent. This type of data augmentation has been used to 
endow models with a bias towards compositionally by teaching them 
that chunks can be recombined in different ways (Andreas, 2020). The 
empirical success of this method suggests that such an inductive bias is 
helpful for the acquisition of syntax. At the same time, large-scale data 
augmentation is arguably a less cognitively plausible method to impart 
this bias, compared to approaches that maintain human-like dataset 
sizes.

McGill-BERT

This submission from Cheng et al. (2023) was runner-up in the Strict
and Loose tracks. The authors improve over the original BERT model 
by modifying two features: First, they shorten the context window, 
so the model only learns more local relationships between words. 
Second, they modify the way that training examples are presented to 
the model, splitting up examples into individual sentences, rather than 
in chunks that may contain multiple sentences. Rather than telling us 
something about psycholinguistic processes, the authors propose that 
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this regime is particularly well-suited to the BabyLM training corpus, in 
particular its CHILDES portion. Because we include only child-directed 
utterances of CHILDES and remove any intervening child-produced 
utterances, each sentence does not necessarily follow from the previous 
one. Therefore, learning to predict these sentences separately, rather 
than as a single cohesive unit, may constitute an easier learning task.

CLIMB: A negative result for curriculum learning

In addition to track winners, we gave several awards to outstanding 
papers, one of which was the paper that describes the CLIMB system, 
focused on curriculum learning (Martinez et al., 2023). The authors 
experiment with three factors: the size of the vocabulary, the difficulty 
metric used to sort the corpus to construct the curriculum, as well as the 
model’s objective function. Martinez et al. find that none of the curric-
ula they tested yielded widespread improvements across the evaluation 
tasks, suggesting that curriculum learning, at least in its current form, 
may not be an effective method to construct sample-efficient language 
models.

We take these overall negative results for curriculum learning as 
fitting into an ongoing debate about the role of data limitations in lan-
guage learning. This debate goes back to Elman (1993), who suggested 
that networks that were limited in certain respects in the initial phases 
of learning might prove to be better learners. Inspired by theories 
from cognitive science about how memory limitations in children might 
benefit rather than impede learning (Newport, 1988), Elman tested 
the impact of both memory and data limitations in language model 
training. He found that a simple recurrent network can learn the 
patterns of English embedded clauses, but only if trained initially on 
simple sentences that did not include embedded clauses, or on networks 
that were initially memory-constrained. This gave rise to the ‘‘starting 
small’’ hypothesis, namely that training models on initially simple ex-
amples and slowly graduating to more complex examples could lead to 
improvements in model performance (Bengio et al., 2009).8 However, 
subsequent work testing this hypothesis yielded mixed results: running 
similar tests on more realistic datasets, Rohde and Plaut (1999) do not 
find evidence that starting small is beneficial to performance. Rather, 
they found that withholding complex examples at the beginning of 
training can hinder language learning in connectionist models. We take 
the negative results of Martinez et al. (2023), as well as other BabyLM 
submissions, as being in line with the conclusions of Rohde and Plaut 
(1999): simplifying the early stages of neural network training does not 
result in better learning outcomes, at least for small-scale datasets.

Looking forward: sample-efficient language models and psycholin-
guistics

The 2023 BabyLM Challenge led to several concrete outcomes 
aligned with our recommendations for more human-scale language 
modeling: it drew attention to the problem of data-efficient models 
and provided a venue for dozens of participants to share ideas and 
resources. Still, the challenge was limited in several important ways, 
especially as far as its implications for cognitive science. Below, we 
discuss some ways in which these limitations can be addressed in future 
iterations of the challenge.
Languages beyond English. The BabyLM challenge was conducted in 
only one language, English. Whatever mechanisms enable rapid lan-
guage learning in the human mind, they do so regardless of the partic-
ular language being learned. Moving forward, it is therefore essential to 
test computational models on a variety of languages to ensure that the 
observed gains in performance are not specific to particular typological 
features.

8 Note there is an important difference between the starting small hypoth-
esis, which is about data limitations, and the cognitive hypotheses which 
initially inspired Elman (1993), which are about memory limitations in 
children.
11 
Multimodal learning. Children learn not only from language but also 
from sensory contact with the world and from interaction with their 
caregivers and with each other. These input modalities may increase 
the learner’s sample efficiency when measured in the number of input 
words (Zhuang, Fedorenko, & Andreas, 2024). We have made a step 
towards assessing the contribution of multimodal learning to sample ef-
ficiency by creating a vision and language track in the second iteration 
of the BabyLM Challenge (Choshen et al., 2024; Hu et al., 2024).

More challenging evaluation tasks. Our main evaluation tasks used either 
zero-shot minimal pair tests (BLiMP) or fine-tuning (GLUE) to probe 
models’ linguistic abilities. These tasks are similar in many ways to the 
tests linguists and cognitive scientists use to probe this knowledge in 
people, but they also run the risk of overestimating model abilities. 
For example, looking at Fig.  3, one might take the performance of 
ELC-BERT and conclude that this model is roughly equivalent to the 
Llama-2 skyline. This raises the question: why would one ever bother 
to train a 70-billion parameter LLM on two trillion words of data when 
a much smaller model performs equally well? The answer is, of course, 
that while our BabyLM models are close to large-scale LLMs on our 
evaluations, large LMs remain far superior at more challenging evalua-
tions, especially those that require generating text. When generating 
from our BabyLMs, for example, models often produce text that is 
filled with repetitions and is sometimes nonsensical. BabyLM models 
are also poor at following instructions or learning from examples in 
their input, something that larger LMs excel at. While their relatively 
strong performance on BLiMP and GLUE indicates that our small-scale 
models have learned interesting generalizations about grammar, this 
should not be taken to suggest that they are, in general, equivalent 
to large-scale LLMs. Finding evaluation tasks that better capture the 
limitations of BabyLMs compared to large-scale LMs is a necessary step 
for future iterations of the challenge.

Incentivizing cognitively motivated submissions. Another limitation of the 
systems submitted to the challenge has to do with the impact of the 
findings on psycholinguistics. While some of the findings have a cogni-
tive interpretation — for example, the negative results for curriculum 
learning can be linked to ongoing debates in psycholinguistics about the 
importance of child-directed speech (Heath, 1983; Ochs, 1982; Rowe, 
2008), and, in particular, support skepticism that child-directed speech 
is necessary for effective language learning — it is less clear how to 
interpret most of the positive results. Take the winning architecture 
ELC-BERT, for example. It is possible to draw loose parallels between 
the disentangled attention implemented by this architecture and cog-
nitive theories that highlight the distinction between fillers and roles. 
However, most of the other features of ELC-BERT are not cognitively 
inspired in any meaningful way. This includes not only this system’s 
low-level modifications to the transformer architecture Appendix B, but 
arguably also the transformer architecture itself, which keeps represen-
tations of all context words in memory, in sharp contrast with humans’ 
limited working memory capacity (Armeni, Honey, & Linzen, 2022). 
The performance of other successful models is likewise only loosely 
connected to cognitive theories. McGill-BERT, for example, achieved 
high scores largely by changing model hyperparameters rather than 
by cognitively motivated modifications. One possible reading of this 
outcome is that theories from cognitive science have little to contribute 
toward effective small-scale language modeling, and vice versa. This 
conclusion is too pessimistic, in our view. The reason for the domi-
nance of transformer variants may be that they enjoy an engineering 
infrastructure ecosystem that is convenient and optimized for efficient 
training. In future iterations, one could consider creating a separate 
track that focuses on novel, cognitively motivated architectures and 
training settings, where systems would not need to compete with 
heavily optimized transformers.
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A wider range of psycholinguistic evaluations. Our evaluation tasks im-
pose an additional limitation for the challenge’s relevance to psycholin-
guistics. Psycholinguists have developed many different paradigms for 
collecting diverse types of human language processing data. However, 
we did not select tasks that represented the full breadth of such 
paradigms. For example, although we argue that LLMs can contribute 
to research on human sentence processing in Section ‘The downsides 
of scaling for psycholinguistics’, we did not ask how well our BabyLMs 
could explain incremental sentence processing data, even though such 
studies are well-established in the previous literature (Goodkind & 
Bicknell, 2018; Wilcox et al., 2023). We did provide an optional eval-
uation for the BabyLM challenge, assessing how closely models’ word 
learning tracks that of a human child. This age of acquisition (AoA) 
task was taken from Portelance, Duan, Frank, and Lupyan (2023). In 
it, language models’ surprisals were converted into a predicted AoA 
score by asking how much they help in predicting the age of acquisition 
over word frequency and concreteness ratings. Although we released 
code to run this evaluation, only seven teams evaluated on the AoA 
prediction task. Future iterations of the challenge should strengthen the 
connection to psycholinguistics by including evaluations that directly 
compare BabyLMs against a broad set of psycholinguistic data collected 
from people, especially from children.
Post-hoc analysis of successful systems. While this first round of the 
challenge was limited insofar as it did not produce any specific insights 
about the cognitive mechanisms for efficient learning, what it did do 
was identify a population of models whose architectures can serve as 
candidates for such mechanisms. It is possible that future work can de-
rive cognitive insight from post-hoc analysis of the successful systems, 
with the goal of studying, conceptually and mathematically, why the 
modifications implemented by those systems facilitate sample-efficient 
learning. We are hopeful that once models are understood at a deeper 
mechanistic level, connections can be drawn with specific theories in 
the cognitive science of learning. Mechanistic interpretability meth-
ods, including circuit discovery (Conmy, Mavor-Parker, Lynch, Heimer-
sheim, & Garriga-Alonso, 2023; Wang, Variengien, Conmy, Shlegeris, 
& Steinhardt, 2023) and causal feature analysis (Bricken et al., 2023; 
Huben, Cunningham, Smith, Ewart, & Sharkey, 2024; Marks, Rager, 
Michaud, Belinkov, Bau et al., 2024), have largely been applied to 
understand performance on NLP tasks, rather than to draw comparisons 
between language models and human language processing. However, 
there is a small but expanding literature that mechanistically investi-
gates language models on phenomena of interest to linguists, including 
incremental sentence processing (Hanna & Mueller, 2024), property 
inference (Rodriguez, Mueller, & Misra, 2024) and quantifiers (Geiger, 
Lu, Icard, & Potts, 2021). Such analysis work should be incentivized in 
future iterations of the challenge.

General discussion

Cognitive modeling with neural networks has played an important 
role in psycholinguistics and many areas of cognitive science. As neural 
network approaches get more and more powerful, neural network 
modeling stands to produce many more insights in the decades ahead. 
At the same time, it is important to take stock and to ask how trends 
shaping the development of these models will impact their ability to 
help us answer scientific questions about the human mind. This paper 
has attempted to do just that. We have argued that, while beneficial for 
producing more powerful models, the current trend of using a standard 
model (transformers) and scaling up model size and training corpus 
has several potential downsides for psycholinguistics research. We 
recommend that linguists, cognitive scientists, and computer scientists 
work together to produce shared resources that are more human-
scale, including human-scale pretraining corpora and models, as well 
as venues that support research dissemination in this area. In addition 
to the potential scientific impact of small-scale language modeling, 
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we believe that focusing on such models has the potential to lower 
the barrier of entry for participation in language model research for 
engineering applications, allowing for a wider and more diverse set of 
interested scientists to contribute.

We reported on the BabyLM Challenge, one effort undertaken by the 
authors to actualize these recommendations. The most significant find-
ing from the challenge itself is that, even at smaller data scales, current 
neural network architectures are very close to achieving human-level 
performance on many linguistic tasks. The best-performing models 
from the challenge showed sensitivity to syntactic constraints on par 
with models several orders of magnitude their size, and were just a few 
percentage points shy of human-level performance on this task. This is 
a significant achievement. Given the rate at which language modeling 
performance has improved recently, it is likely that computational 
models — even ones trained on human-scale datasets — will show 
sensitivities to some syntactic constraints that are on par with humans. 
The challenge produced several concrete outcomes, including (i) the 
BabyLM Corpus, (ii) a series of small-scale models, and (iii) several 
lessons for best practices in small-scale language modeling. Finally, 
the number of participants who contributed to the first iteration of 
this shared task demonstrates the broad interest in the topic. We are 
optimistic that, by thinking critically and carefully about the connec-
tions between machine learning and cognitive science, computational 
modeling researchers will continue to contribute to psycholinguistics in 
the decades ahead.
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Appendix A. experiments

In this appendix, we present experiments inspired by unanswered 
questions from the BabyLM Challenge. First, we investigate the role of 
training time, measured in the number of epochs, on the performance of 
LTG-BERT. This architecture was originally trained with a significantly 
larger-than-standard number of epochs. Is such a large number of 
epochs necessary? Second, we directly compare ELC-BERT, which was 
the official winner of the BabyLM Challenge, against LTG-BERT, which 
is the backbone architecture on which it is based. We ask, are the 
skip connections between layers introduced by ELC-BERT necessary 
for strong performance in small-data language modeling? We find that 
LTG-BERT is about as good as ELC-BERT in our controlled setting, and 
that, while a large number of epochs can increase model performance, 
the returns diminish quickly with more epochs. We conclude that LTG-
BERT is appropriate for successful small-scale language modeling and 
that it can be well-trained in about 20 epochs. However when trained 
for fewer epochs, it is not obviously better than other high-performing 
models in the challenge.
13 
Data availability

Please see this repository, which contains code for training LTG-
BERT and ELC-BERT models on the BabyLM training corpora.

Evaluating the role of the number of epochs in training

The BabyLM Challenge did not place any limits on the amount 
of computational resources participants could use when training their 
models. Because our dataset size was fixed for participants in the
Strict and Strict-Small tracks, this meant that computational resources 
fluctuated as a function of (i) model size and (ii) training epochs, 
or the number of times the model sees its training data. Research in 
scaling has determined that training data size and model size should 
scale proportionally (Hoffmann et al., 2022); therefore, entrants tended 
not to train large models. When entrants did use more computational 
resources, this tended to be allocated toward an increased number 
of training epochs. When preparing baselines, we trained models for 
20 epochs, which we chose based on prior experience. We intended 
Fig. A.8. Training curves and GLUE evaluation scores for Strict and Strict-Small LTG-BERT. All losses and scores are averaged over 3 random seeds. GLUE ‘‘Evaluation Score’’ is an 
average over all task-specific metrics (typically accuracy or F1-score). GLUE performance for Strict-Small LTG-BERT declines after training for 50 epochs. The Pearson correlations 
between training loss and GLUE performance are −0.97 and 0.61 for Strict and Strict-Small respectively.

https://github.com/michahu/ltg-bert
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Table A.2
A comparison between our reproductions of LTG-BERT and ELC-BERT (labeled ‘‘[R]’’), our baselines, and existing results.
 Model BLiMP GLUE MSGS BLiMP-Supp. 
 Llama 2 0.84 0.84 0.26 0.75  
 RoBERTa-Base 0.87 0.79 0.24 0.76  
 

St
ric
t

ELC-BERT (Charpentier & Samuel, 2023) 0.85 0.78 0.47 0.77  
 LTG-BERT (Samuel et al., 2023), 0.86 0.78 0.28 0.77  
 [R] ELC-BERT, 20 epochs 0.83 0.75 0.25 0.67  
 [R] LTG-BERT, 20 epochs 0.83 0.76 0.19 0.68  
 Best non-LTG-based model (McGill-BERT) 0.84 0.72 0.25 0.71  
 Best Baseline (OPT-125M) 0.75 0.70 0.13 0.68  
 

S-
Sm

al
l LTG-BERT (Samuel et al., 2023) 0.80 0.74 0.29 0.67  

 [R] LTG-BERT, 800 epochs 0.76 0.67 0.02 0.63  
 Best non-LTG-based model (MLSM) 0.79 0.71 0.17 0.57  
 Best Baseline (OPT-125M) 0.63 0.62 0.10 0.53  
this number—20 epochs—to also serve as a best first guess for our 
participants’ training budgets, especially for those who did not have 
extensive prior experience training language models.

While most participants did indeed train in the general range of 20 
epochs, some chose to train for much longer. In particular, the creators 
of ELC-BERT trained for 450 epochs in their Strict submission and 2,000 
epochs in their Strict-Small submission, which is well beyond typical for 
language modeling research. Therefore, one big unanswered question 
at the end of the challenge was whether these models had achieved 
top scores because of their architectural innovations, or rather because 
they had trained for longer than other models. One other unanswered 
question from the challenge relates to the relative importance of the 
LTG-BERT baseline versus the skip connections introduced for ELC-
BERT (described in Section ‘Submitted systems and results’). Do the 
skip connections introduced in ELC-BERT significantly improve the 
model over and above the LTG-BERT baseline?

Methods

To answer these questions, we reproduced the LTG-BERT and ELC-
BERT training pipeline using publicly available code from the authors 
and analyzed how the performance of the model improved over the 
course of training. We trained three models: For our first model, we 
trained LTG-BERT on the Strict dataset for 20 epochs to match our 
baselines. For our second model, we trained LTG-BERT on the Strict-
Small dataset for 800 epochs, to more closely match the training epochs 
of the original LTG-BERT-based models submitted to the competition. 
Although we used fewer training epochs, our batch size was also 
smaller than the one reported in the original LTG-BERT paper due 
to computing constraints. Therefore, the number of gradient updates, 
or times when the model updates its weights based on the observed 
training data, is actually higher than that of LTG-BERT. For our third 
model, we trained ELC-BERT for 20 epochs on the Strict dataset. This 
was done so that we could make a direct comparison between ELC- 
and LTG-BERT when trained on the same number of epochs. Due to 
the significant cost of evaluating intermediate checkpoints, we only 
examine the final trained model for ELC-BERT.

The hyperparameters of the models trained in this experiment are 
given in Table  A.3. All of the models trained for these reproduction 
experiments have a ‘‘[R]’’ next to their name. Note that our ELC-BERT 
reproduction uses the hyperparameters detailed in the Strict [R] column 
of this table. All training runs were done on 4 NVIDIA RTX8000 GPUs. 
The results of this experiment are shown in Table  A.2.

Results

What is the impact of additional epochs? We find that both ELC- and 
LTG-BERT drop in performance when trained on only 20 epochs. 
Focusing first on our 100 million Strict models, the drop is about 2 
percentage points on BLiMP and GLUE, about 10 percentage points on 
the BLiMP supplement, and an even larger decrease in correlation on 
14 
MSGS. While we were not able to reproduce the training setup of ELC- 
and LTG-BERT exactly, these results suggest that a large number of 
epochs contribute to performance above and beyond model architec-
ture. While still competitive, 20-epoch versions of ELC- and LTG-BERT 
are no longer clear winners of the Strict track. In A.2 we compare the 
scores of these models to the second-place model in the track, McGill-
BERT (Cheng et al., 2023). While both 20-epoch models outperform 
McGill-BERT on GLUE, McGILL-BERT now gets better scores on BLiMP 
and the BLiMP supplement. For the Strict-Small track reproduction 
we observe similar results: Compared to the model trained on 2,000 
epochs, the 800-epoch LTG-BERT performs 4 points lower on BLiMP 
and the BLiMP supplement, seven points lower on GLUE, and has a 
far lower correlation score on MSGS. Again, while there are still some 
differences in training details between us and the original authors, these 
results suggest that the number of epochs does contribute to the model’s 
success. Compared against the second-place Strict-Small model, MLSM, 
the 800-epoch LTG-BERT model only performs better on the BLiMP 
supplement.

What is the impact of skip connections? Comparing our Strict ELC- and 
LTG-BERTs, we find that the two models are tied on BLiMP, ELC-BERT 
performs better on MSGS, but LTG-BERT has higher scores on GLUE 
and the BLiMP supplement (although only by 1 percentage point in 
each case). We interpret these results as indicating that the two models 
are approximately as good on our language-related evaluation tasks, 
and therefore that the skip connections of ELC-BERT do not add much 
above and beyond the original LTG-BERT architecture.
Training dynamics. In Fig.  A.9, we visualize the training dynamics 
and BLiMP performance of models over training. We find that both 
the Strict and Strict-Small model’s training loss decays roughly ex-
ponentially during training, as expected (Muennighoff et al., 2024). 
For both the Strict and Strict-Small models, the increase in BLiMP 
performance also diminishes exponentially over time. This trend also 
holds for the Strict model on GLUE (see Fig.  A.8), but not for the
Strict-Small model, where GLUE performance decreases slightly from 
50 training epochs onwards. This pattern of diminishing returns on 
downstream tasks is in line with the previous literature on language 
model training (Hoffmann et al., 2022; Muennighoff et al., 2024). 
We do not observe any unusual learning dynamics, such as sudden 
drops in the training loss, nor instances in which test scores improve 
dramatically late in training, a phenomenon observed in some small-
scale synthetic data experiments (Murty, Sharma, Andreas, & Manning, 
2023; Power, Burda, Edwards, Babuschkin, & Misra, 2022).

Conclusions and recommendations

Our conclusions are threefold: First, it appears that in controlled 
settings ELC-BERT does not offer much of an advantage over LTG-BERT. 
We therefore recommend that practitioners interested in small-scale 
language modeling should use LTG-BERT, as this model is simpler. 
Second, when trained for fewer epochs, LTG-BERT is still an effective 
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Fig. A.9. Training curves and BLiMP evaluation scores for Strict and Strict-Small LTG-BERT. All losses and scores are averaged over 3 random seeds. The Pearson correlations 
between training loss and BLiMP performance are −0.99 and −0.95 for Strict and Strict-Small respectively, indicating strong linear relationships. In other words, the training loss 
and BLiMP evaluations improve at roughly the same rate.
architecture for small-scale language modeling. Furthermore, because 
improvements decrease exponentially with additional epochs, we rec-
ommend that practitioners need not train this architecture for the 
number of epochs reported in Charpentier and Samuel (2023). Finally, 
it appears from our studies that while 20-epoch models are still ef-
fective, they are not clearly better than other top-performing BabyLM 
submissions. We, therefore, conclude that while LTG-BERT is a good 
architecture for small-scale language modeling, it was the large number 
of epochs that made it stand out above the other submissions.

Appendix B. LTG-BERT: Further details

Here we describe the three modifications to the standard trans-
former that are implemented by LTG-BERT:

1. Enhanced layer normalization. Standard layer normalization in 
transformers centers and scales the activations of a given layer 
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to have zero mean and unit variance, such that the inputs to 
the next layer are of similar magnitude (Ba, Kiros, & Hinton, 
2016; Vaswani et al., 2017). This has been found empirically 
to speed up and improve training. Following Shleifer, Weston, 
and Ott (2021), LTG-BERT applies this operation at more points 
along the models’ computation than in the original transformer 
architecture.

2. GEGLU feed-forward modules (Shazeer, 2020). Each unit in a 
feed-forward layer computes a weighted average of its input, 
which is then passed through a nonlinear activation function. 
The standard transformer uses the ReLU activation function, 
whose output is zero for negative inputs and linear for positive 
ones. GEGLU is a more complex feed-forward layer. Here, the 
feed-forward layers learn two sets of weights and bias terms. 
The output of one set is passed through the Gaussian Error Lin-
ear Unit (GELU) activation function (which is similar to ReLU, 



E.G. Wilcox et al. Journal of Memory and Language 144 (2025) 104650 
Table A.3
Pretraining hyperparameters. Differences between our training runs (labeled ‘‘[R]’’) and 
the original are bolded.
 Hyperparameter Strict Strict [R] Strict-Small Strict-Small [R] 
 Number of parameters 98M 98M 24M 24M  
 Number of layers 12 12 12 12  
 Hidden size 768 768 384 384  
 FF intermediate size 2 048 2048 1024 1024  
 Vocabulary size 16 384 16384 6144 6144  
 Attention heads 12 12 6 6  
 Hidden dropout 0.1 0.1 0.1 0.1  
 Attention dropout 0.1 0.1 0.1 0.1  
 Training steps 15 625 110000 31250 32000  
 Batch size 32 768 256 8096 2048  
 Initial Sequence length 128 128 128 128  
 Final Sequence length 512 128 512 128  
 Warmup ratio 1.6% 1.6% 1.6% 1.6%  
 Initial learning rate 0.01 3e-3 0.005 0.005  
 Final learning rate 0.001 0.00141 0.005 0.005  
 Learning rate scheduler cosine cosine cosine cosine  
 Weight decay 0.1 0.1 0.4 0.4  
 Layer norm 𝜖 1e−7 1e−7 1e−7 1e−7  
 Optimizer LAMB LAMB LAMB LAMB  
 LAMB 𝜖 1e−6 1e−6 1e−6 1e−6  
 LAMB 𝛽1 0.9 0.9 0.9 0.9  
 LAMB 𝛽2 0.98 0.98 0.98 0.98  
 Gradient clipping 2.0 2.0 2.0 2.0  

except it is curved around zero), and is then multiplied by the 
output of the other set.

3. The weights of the feedforward layers are initialized to values 
that are smaller than is standard, and that are progressively 
smaller for higher layers (Nguyen & Salazar, 2019).

Data availability

We have shared links to data and code in the article.
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